804 research outputs found

    Persistent fluctuations in stride intervals under fractal auditory stimulation

    Get PDF
    Copyright @ 2014 Marmelat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.Commission of the European Community and the Netherlands Organisation for Scientific Research

    The Pauli principle in a three-body cluster model and the momentum distributions after fragmentation of 6He and 11Li

    Get PDF
    We investigate two simple prescriptions to account for the Pauli principle in a three-body cluster model employing a new method based on an adiabatic hyperspherical expansion to solve the Faddeev equations in coordinate space. The resulting wave functions are computed and compared. They are furthermore tested on halo nuclei by calculations of momentum distributions and invariant mass spectra arising after fragmentation of fast 6^6He and 11^{11}Li in collisions with light targets. The prescriptions are very accurate and the available measured quantities are remarkably well reproduced when final state interactions are included.Comment: 18 pages, LaTex file, 15 postscript figures included using epsf.st

    Comparing High Dimensional Word Embeddings Trained on Medical Text to Bag-of-Words For Predicting Medical Codes

    Get PDF
    Word embeddings are a useful tool for extracting knowledge from the free-form text contained in electronic health records, but it has become commonplace to train such word embeddings on data that do not accurately reflect how language is used in a healthcare context. We use prediction of medical codes as an example application to compare the accuracy of word embeddings trained on health corpora to those trained on more general collections of text. It is shown that both an increase in embedding dimensionality and an increase in the volume of health-related training data improves prediction accuracy. We also present a comparison to the traditional bag-of-words feature representation, demonstrating that in many cases, this conceptually simple method for representing text results in superior accuracy to that of word embeddings

    Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems

    Get PDF
    Background. Physiologic signals, such as cardiac interbeat intervals, exhibit complex fluctuations. However, capturing important dynamical properties, including nonstationarities may not be feasible from conventional time series graphical representations. Methods. We introduce a simple-to-implement visualisation method, termed dynamical density delay mapping (``D3-Map'' technique) that provides an animated representation of a system's dynamics. The method is based on a generalization of conventional two-dimensional (2D) Poincar� plots, which are scatter plots where each data point, x(n), in a time series is plotted against the adjacent one, x(n+1). First, we divide the original time series, x(n) (n=1,..., N), into a sequence of segments (windows). Next, for each segment, a three-dimensional (3D) Poincar� surface plot of x(n), x(n+1), hx(n),x(n+1) is generated, in which the third dimension, h, represents the relative frequency of occurrence of each (x(n),x(n+1)) point. This 3D Poincar\'e surface is then chromatised by mapping the relative frequency h values onto a colour scheme. We also generate a colourised 2D contour plot from each time series segment using the same colourmap scheme as for the 3D Poincar\'e surface. Finally, the original time series graph, the colourised 3D Poincar\'e surface plot, and its projection as a colourised 2D contour map for each segment, are animated to create the full ``D3-Map.'' Results. We first exemplify the D3-Map method using the cardiac interbeat interval time series from a healthy subject during sleeping hours. The animations uncover complex dynamical changes, such as transitions between states, and the relative amount of time the system spends in each state. We also illustrate the utility of the method in detecting hidden temporal patterns in the heart rate dynamics of a patient with atrial fibrillation. The videos, as well as the source code, are made publicly available. Conclusions. Animations based on density delay maps provide a new way of visualising dynamical properties of complex systems not apparent in time series graphs or standard Poincar\'e plot representations. Trainees in a variety of fields may find the animations useful as illustrations of fundamental but challenging concepts, such as nonstationarity and multistability. For investigators, the method may facilitate data exploration

    Probing halo nucleus structure through intermediate energy elastic scattering

    Get PDF
    This work addresses the question of precisely what features of few body models of halo nuclei are probed by elastic scattering on protons at high centre-of-mass energies. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11^{11}Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead.Comment: 8 pages REVTeX, 1 eps figure, accepted for publication in Phys. Rev.

    A critical look at studies applying over-sampling on the TPEHGDB dataset

    Get PDF
    Preterm birth is the leading cause of death among young children and has a large prevalence globally. Machine learning models, based on features extracted from clinical sources such as electronic patient files, yield promising results. In this study, we review similar studies that constructed predictive models based on a publicly available dataset, called the Term-Preterm EHG Database (TPEHGDB), which contains electrohysterogram signals on top of clinical data. These studies often report near-perfect prediction results, by applying over-sampling as a means of data augmentation. We reconstruct these results to show that they can only be achieved when data augmentation is applied on the entire dataset prior to partitioning into training and testing set. This results in (i) samples that are highly correlated to data points from the test set are introduced and added to the training set, and (ii) artificial samples that are highly correlated to points from the training set being added to the test set. Many previously reported results therefore carry little meaning in terms of the actual effectiveness of the model in making predictions on unseen data in a real-world setting. After focusing on the danger of applying over-sampling strategies before data partitioning, we present a realistic baseline for the TPEHGDB dataset and show how the predictive performance and clinical use can be improved by incorporating features from electrohysterogram sensors and by applying over-sampling on the training set

    Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children

    Get PDF
    Following recent advances in the analysis of centre-of-pressure (COP) recordings, we examined the structure of COP trajectories in ten children (nine in the analyses) with cerebral palsy (CP) and nine typically developing (TD) children while standing quietly with eyes open (EO) and eyes closed (EC) and with concurrent visual COP feedback (FB). In particular, we quantified COP trajectories in terms of both the amount and regularity of sway. We hypothesised that: (1) compared to TD children, CP children exhibit a greater amount of sway and more regular sway and (2) concurrent visual feedback (creating an external functional context for postural control, inducing a more external focus of attention) decreases both the amount of sway and sway regularity in TD and CP children alike, while closing the eyes has opposite effects. The data were largely in agreement with both hypotheses. Compared to TD children, the amount of sway tended to be larger in CP children, while sway was more regular. Furthermore, the presence of concurrent visual feedback resulted in less regular sway compared to the EO and EC conditions. This effect was less pronounced in the CP group where posturograms were most regular in the EO condition rather than in the EC condition, as in the control group. Nonetheless, we concluded that CP children might benefit from therapies involving postural tasks with an external functional context for postural control

    Reduced Physiological Complexity in Robust Elderly Adults with the APOE ε4 Allele

    Get PDF
    BACKGROUND:It is unclear whether the loss of physiological complexity during the aging process is due to genetic variations. The APOE gene has been studied extensively in regard to its relationship with aging-associated medical illness. We hypothesize that diminished physiological complexity, as measured by heart rate variability, is influenced by polymorphisms in the APOE allele among elderly individuals. METHODOLOGY/PRINCIPAL FINDINGS:A total of 102 robust, non-demented, elderly subjects with normal functions of daily activities participated in this study (97 males and 5 females, aged 79.2+/-4.4 years, range 72-92 years). Among these individuals, the following two APOE genotypes were represented: epsilon4 non-carriers (n = 87, 85.3%) and epsilon4 carriers (n = 15, 14.7%). Multi-scale entropy (MSE), an analysis used in quantifying complexity for nonlinear time series, was employed to analyze heart-rate dynamics. Reduced physiological complexity, as measured by MSE, was significantly associated with the presence of the APOE epsilon4 allele in healthy elderly subjects, as compared to APOE epsilon4 allele non-carriers (24.6+/-5.5 versus 28.9+/-5.2, F = 9.429, p = 0.003, respectively). CONCLUSIONS/SIGNIFICANCE:This finding suggests a role for the APOE gene in the diminished physiological complexity seen in elderly populations
    corecore