10,983 research outputs found

    Evidence of Skyrmion excitations about ν=1\nu =1 in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission

    Full text link
    We observe a dramatic reduction in the degree of spin-polarization of a two-dimensional electron gas in a magnetic field when the Fermi energy moves off the mid-point of the spin-gap of the lowest Landau level, ν=1\nu=1. This rapid decay of spin alignment to an unpolarized state occurs over small changes to both higher and lower magnetic field. The degree of electron spin polarization as a function of ν\nu is measured through the magneto-absorption spectra which distinguish the occupancy of the two electron spin states. The data provide experimental evidence for the presence of Skyrmion excitations where exchange energy dominates Zeeman energy in the integer quantum Hall regime at ν=1\nu=1

    Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N

    Full text link
    The development of a mm-spatial-resolution, resonant-response detector based on a micrometric glass capillary array filled with liquid scintillator is described. This detector was developed for Gamma Resonance Absorption (GRA) in 14N. GRA is an automatic-decision radiographic screening technique that combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with very good sensitivity and specificity to nitrogenous explosives. Detailed simulation of the detector response to electrons and protons generated by the 9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a mixed gamma-ray and neutron source. Towards this, a prototype capillary detector was assembled, including the associated filling and readout systems. Simulations and experimental results indeed show that proton tracks are distinguishable from electron tracks at relevant energies, on the basis of a criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure

    Tunneling into a two-dimensional electron system in a strong magnetic field

    Full text link
    We investigate the properties of the one-electron Green's function in an interacting two-dimensional electron system in a strong magnetic field, which describes an electron tunneling into such a system. From finite-size diagonalization, we find that its spectral weight is suppressed near zero energy, reaches a maximum at an energy of about 0.2e2/ϵlc0.2e^{2}/\epsilon l_{c}, and decays exponentially at higher energies. We propose a theoretical model to account for the low-energy behavior. For the case of Coulomb interactions between the electrons, at even-denominator filling factors such as ν=1/2\nu=1/2, we predict that the spectral weight varies as eω0/ωe^{-\omega_0/|\omega|}, for ω0\omega\rightarrow 0

    Robot Vision Library

    Get PDF
    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lense

    Time and position sensitive single photon detector for scintillator read-out

    Full text link
    We have developed a photon counting detector system for combined neutron and gamma radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy gamma radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate gamma energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).Comment: Proceedings of FNDA 201

    Spin Polarizations at and about the Lowest Filled Landau Level

    Full text link
    The spin polarization versus temperature at or near a fully filled lowest Landau level is explored for finite-size systems in a periodic rectangular geometry. Our results at ν=1\nu=1 which also include the finite-thickness correction are in good agreement with the experimental results. We also find that the interacting electron system results are in complete agreement with the results of the sigma model, i.e., skyrmions on a torus have a topological charge of Q2Q \ge 2 and the Q=1 solution is like a single spin-flip excitation. Our results therefore provide direct evidence for the skyrmionic nature of the excitations at this filling factor.Comment: 4 pages, REVTEX, and 4 .ps files, To be published in Europhysics Letter

    Non-Perturbative Production of Multi-Boson States and Quantum Bubbles

    Full text link
    The amplitude of production of nn on-mass-shell scalar bosons by a highly virtual field ϕ\phi is considered in a λϕ4\lambda \phi^4 theory with weak coupling λ\lambda and spontaneously broken symmetry. The amplitude of this process is known to have an n!n! growth when the produced bosons are exactly at rest. Here it is shown that for n1/λn \gg 1/\lambda the process goes through `quantum bubbles', i.e. quantized droplets of a different vacuum phase, which are non-perturbative resonant states of the field ϕ\phi. The bubbles provide a form factor for the production amplitude, which rapidly decreases above the threshold. As a result the probability of the process may be heavily suppressed and may decrease with energy EE as exp(constEa)\exp (-const \cdot E^a), where the power aa depends on the number of space dimensions. Also discussed are the quantized states of bubbles and the amplitudes of their formation and decay.Comment: 20 pages in LaTeX + 3 figures (fugures not included, hardcopy available on request), TPI-MINN-93/20-
    corecore