304 research outputs found

    A Vascular Perspective on Neurogenesis

    Get PDF

    Concert/C: A language for distributed programming

    Get PDF
    Concert/C is a new language for distributed C programming that extends ANSI C to support distribution and process dynamics. Concert/C provides the ability to create and terminate processes, connect them together, and communicate among them. It supports transparent remote function calls (RPC) and asynchronous messages. Interprocess communications interfaces are typed in Concert/C, and type correctness is checked at compile time wherever possible, otherwise at runtime. All C data types, including complex data structures containing pointers and aliases, can be transmitted in RPCs. Concert/C programs run on a heterogeneous set of machine architectures and operating systems and communicate over multiple RPC and messaging protocols. The current Concert/C implementation runs on AIX 3.2 1, SunOS 4.1, Solaris 2.2 and OS/2 2.1, and communicates over Sun RPC, OSF/DCE and UDP multicast. Several groups inside and outside IBM are actively using Concert/C, and it is available via anonymous ftp from software.watson.ibm.com:/pub/concert.

    Integrating resource selection into spatial capture-recapture models for large carnivores

    Get PDF
    Wildlife managers need reliable methods to estimate large carnivore densities and population trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new approaches for monitoring trends in wildlife abundance and these methods are particularly applicable to large carnivores. We applied SCR models in a Bayesian framework to estimate mountain lion densities in the Bitterroot Mountains of west central Montana. We incorporate an existing resource selection function (RSF) as a density co-variate to account for heterogeneity in habitat use across the study area and include data collected from harvested lions. We identify individuals through DNA samples collected by (1) biopsy darting mountain lions detected in systematic surveys of a study area, (2) opportunistically collecting hair and scat samples, and (3) sampling all harvested mountain lions. We included 80 DNA samples collected from 62 individuals in the analysis. Including information on predicted habitat use as a co-variate on the distribution of activity centers reduced the median estimated density by 44% the standard deviation by 7% and the width of 95% credible intervals by 10% as compared to standard SCR models. Within the two management units of interest, we estimated a median mountain lion density of 4.5 mountain lions/100 km2 (95% CI=2.9, 7.7) and 5.2 mountain lions/100 km2 (95% CI=3.4, 9.1). Including harvested individuals (dead recovery) did not create a significant bias in the detection process by introducing individuals that could not be detected after removal. However, the dead recovery component of the model did have a substantial effect on results by increasing sample size. The ability to account for heterogeneity in habitat use provides a useful extension to SCR models, and will enhance the ability of wildlife managers to reliably and economically estimate density of wildlife populations, particularly large carnivores

    Contacting domains segregate a lipid transporter from a solute transporter in the malarial host–parasite interface

    Get PDF
    While membrane contact sites between intracellular organelles are abundant, little is known about the contacts between membranes that delimit extracellular junctions within cells, such as intracellular parasites. Here authors demonstrate the segregation of a lipid transporter from a solute transporter in the malarial host-parasite interface

    Florida\u27s Mystery Coral-Killer Identified

    Get PDF
    An unusual coral disease appeared on the Florida Reef Tract in June 1995. It was distinct in its microbiology, its pattern of tissue degradation, the species susceptible to it, and its regional distribution. Symptoms included a sharp line between healthy and diseased tissue, as occurs with other coral diseases, but the pathogen responsible for the new outbreak seemed more virulent, affected a wider variety of species, and destroyed tissue much more rapidly than these other \u27line\u27 or \u27band\u27 diseases. We have identified the pathogen responsible for this new disease as a new species of Sphingomonas

    Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli

    Get PDF
    Despite extensive study of individual enzymes and their organization into pathways, the means by which enzyme networks control metabolite concentrations and fluxes in cells remains incompletely understood. Here, we examine the integrated regulation of central nitrogen metabolism in Escherichia coli through metabolomics and ordinary-differential-equation-based modeling. Metabolome changes triggered by modulating extracellular ammonium centered around two key intermediates in nitrogen assimilation, α-ketoglutarate and glutamine. Many other compounds retained concentration homeostasis, indicating isolation of concentration changes within a subset of the metabolome closely linked to the nutrient perturbation. In contrast to the view that saturated enzymes are insensitive to substrate concentration, competition for the active sites of saturated enzymes was found to be a key determinant of enzyme fluxes. Combined with covalent modification reactions controlling glutamine synthetase activity, such active-site competition was sufficient to explain and predict the complex dynamic response patterns of central nitrogen metabolites

    Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample

    Get PDF
    The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sample represents the final set of galaxies observed using the original SDSS target selection criteria. We analyse the clustering of galaxies within this sample, including both the Luminous Red Galaxy (LRG) and Main samples, and also include the 2-degree Field Galaxy Redshift Survey (2dFGRS) data. Baryon Acoustic Oscillations are observed in power spectra measured for different slices in redshift; this allows us to constrain the distance--redshift relation at multiple epochs. We achieve a distance measure at redshift z=0.275, of r_s(z_d)/D_V(0.275)=0.1390+/-0.0037 (2.7% accuracy), where r_s(z_d) is the comoving sound horizon at the baryon drag epoch, D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3), D_A(z) is the angular diameter distance and H(z) is the Hubble parameter. We find an almost independent constraint on the ratio of distances D_V(0.35)/D_V(0.2)=1.736+/-0.065, which is consistent at the 1.1sigma level with the best fit Lambda-CDM model obtained when combining our z=0.275 distance constraint with the WMAP 5-year data. The offset is similar to that found in previous analyses of the SDSS DR5 sample, but the discrepancy is now of lower significance, a change caused by a revised error analysis and a change in the methodology adopted, as well as the addition of more data. Using WMAP5 constraints on Omega_bh^2 and Omega_ch^2, and combining our BAO distance measurements with those from the Union Supernova sample, places a tight constraint on Omega_m=0.286+/-0.018 and H_0 = 68.2+/-2.2km/s/Mpc that is robust to allowing curvature and non-Lambda dark energy. This result is independent of the behaviour of dark energy at redshifts greater than those probed by the BAO and supernova measurements. (abridged)Comment: 22 pages, 16 figures, minor changes to match version published in MNRA

    Resolving the Cosmological Missing Energy Problem

    Get PDF
    Some form of missing energy may account for the difference between the observed cosmic matter density and the critical density. Two leading candidates are a cosmological constant and quintessence (a time-varying, inhomogenous component with negative pressure). We show that an ideal, full-sky cosmic background anisotropy experiment may not be able to distinguish the two, even when non-linear effects due to gravitational lensing are included. Due to this ambiguity, microwave background experiments alone may not determine the matter density or Hubble constant very precisely. We further show that degeneracy may remain even after considering classical cosmological tests and measurements of large scale structure.Comment: 6 pages, Latex, 4 postscript figures; revised analysis to include gravitational lensin
    corecore