41 research outputs found

    Kondo resonances of transition-metal-atom impurities in a metal host: Dependence on d-orbital occupancy.

    Get PDF
    Kondo resonances for transition-metal-atom impurities in a metal host have been analyzed by means of an ionic model as a function of the impurity d-orbital occupancy. The ionic Hamiltonian has been obtained by making use of the atomic Hund first rule. This Hamiltonian has been solved using a Green-function equation of motion method up to second order in the transition metal–host interaction. We find Kondo temperatures that decrease with the atomic total spin, the largest one appearing for charge fluctuations d0d1 and d10d9, in good agreement with the experimental evidence.Fil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Flores, F.. Universidad Autónoma de Madrid; Españ

    Interference between resonant and Auger mechanisms for charge-exchange processes near surfaces

    Get PDF
    In this work we solve the dynamics of the Newns-Anderson Hamiltonian supplemented with Auger termsand analyze the case of He1 scattered off an Al ~100! surface. The dynamical solution is compared with resultsof calculations based on much simpler approximations. We prove that resonant and Auger processes can betreated separately and independently in this case and that charge exchange between He and Al proceeds viaresonant and Auger exchange of electrons between the promoted molecular orbital of He and the conductionband states of Al.Fil: García, Evelina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Wang, N.P.. Universidad Autónoma de Madrid; EspañaFil: Monreal, R.C.. Universidad Autónoma de Madrid; EspañaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Influence of surface states on the conductance spectra for Co adsorbed on Cu(111)

    Get PDF
    We calculate the conductance spectra of a Co atom adsorbed on Cu(111), considering the Co 3d orbitals within a correlated multiple configurations model interacting through the substrate band with the Co 4s orbital, which is treated in a mean-field-like approximation. By symmetry, only the dz2 orbital couples with the s orbital through the Cu bands, and the interference between both conduction channels introduces a zero-bias anomaly in the conductance spectra. We find that, while the Kondo resonance is mainly determined by the interaction of the Co d orbitals with the bulk states of the Cu(111) surface, a proper description of the contribution given by the coupling with the localized surface states to the Anderson widths is crucial to describe the interference line shape. We find that the coupling of the Co 4s orbital with the Shockley surface states is responsible for two main features observed in the measured conductance spectra, the dip shape around the Fermi energy and the resonance structure at the surface state low band edge.Fil: Tacca, Marcos Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina. Universitat Ulm. Faculty Of Natural Sciences; AlemaniaFil: Jacob, T.. Universitat Ulm. Faculty Of Natural Sciences; AlemaniaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentin

    Signals of strong electronic correlation in ion scattering processes

    Get PDF
    Previous measurements of neutral atom fractions for Sr+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (Sr0 and Sr+) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (Sr0 and Sr+) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e-correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.Fil: Bonetto, Fernando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Gonzalez, C.. Facultad de Ciencias. Universidad de Granada.; EspañaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentin

    Effective treatment of charge and spin fluctuations in dynamical and static atom-surface interactions

    Get PDF
    In this work we introduce a formalism that provides a good description of the correlated charge states of an atom interacting statically or dynamically with a metal surface, including realistic features of the atom-surface system. Our treatment of the Anderson impurity with an intrasite finite repulsion is based on the use of a projection operator technique and the application of the equation of motion method. The specific case of charge state configurations having zero, one, and two valence electrons of atoms with s-type valence orbital is discussed in this work. Static properties, such as the average occupation and the local density of states at the atom site and dynamical charge fractions in atom scattering processes, are compared with exact calculations and also with other existing approximations. Our treatment of the finite electronic repulsion at the atom site also reproduces satisfactorily the experimental behavior of the transmission phase shift of a dot measured by Aharonov-Bohm interferometry in both weak and strong coupling limits.Fil: Romero, Marcelo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Flores, F.. Universidad Autónoma de Madrid; EspañaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Multiorbital electronic correlation effects of Co adatoms on graphene: An ionic Hamiltonian approach

    Get PDF
    In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom. The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface interacting system. The physical quantities of interest are calculated by using a Green functions formalism, solved by means of the equations of motion method closed up to a second order in the atom-band coupling term. The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations and assuming that the lower energy configurations obey Hund's rules. The calculated spectral densities and the occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate potentials, of resonancelike features in the conductance spectra which can be related to transitions between atomic configurations of low occurrence probability.Fil: Tacca, Marcos Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Jacob, T.. Universitat Ulm. Faculty of Natural Sciences; AlemaniaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentin

    Localized description of band structure effects on Li atom interaction with graphene

    Get PDF
    We study theoretically the localized aspects of the interaction between an Li atom and graphene. To this end, we use an ab initio calculation of the Hamiltonian terms within the Anderson model that allows us to take into account the chemical properties of Li and C atoms and the two-dimensional band structure of graphene. In this way, physical magnitudes of interest such as the hybridization function, the adatom spectral density and valence occupation are calculated. We find that the interference between the adatom neighboring sites together with the pronounced energy gap around the Γ point lead to negligible hybridization widths in a wide range of energies and are practically not dependent on the adsorption site. Consequently, this very weak coupling regime makes possible a local magnetic moment formation. Moreover, the strong suppression of the atom level broadening allows for an explanation of the unexpected neutralization measured at low energies in experiments of Li + scattering by a highly oriented pyrolytic graphite surface.Fil: Romero, Marcelo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Iglesias García, Adalberto de Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Collision of protons with carbon atoms of a graphene surface in the presence of adsorbed potassium

    Get PDF
    In this work we study the frontal collision of protons with the carbon atoms of a graphene surface with a low coverage of adsorbed potassium. It is aimed at the analysis of the effect of the adsorbates in both charge exchange and electron emission processes, when the binary collision occurs between the proton and a carbon atom of the surface. The frontal collision with the K adsorbate, already analyzed and discussed in a previous work, is compared with the frontal collision with different carbon neighbors. In the present work we studied the signals, due to the localized structures in the density matrix of the composed graphene plus potassium surface, that can be distinguished when the collision occurs either with the adsorbate, a nearby carbon atom, or a carbon atom that does not feel the presence of the adsorbate. The interacting system is described by the Anderson Hamiltonian which takes into account the electronic repulsion on the projectile site; the charge fractions, the energy distribution of electrons in the solid, and the electron emission after the collision are calculated by using the nonequilibrium Green-Keldysh functions formalism solved by the equation of motion method. In the binary collision with a carbon atom, the extended features of the band structure of graphene smooth the dependence of the projectile charge fractions on the incoming energy and notably decrease the negative ions formation. The localized structures of the density of matrix caused by the presence of the adsorbate are perceptible for scattered carbon atoms close to K. The intense emission of low energy electrons obtained in the case of the scattering by potassium is fundamentally associated with the very localized K-4s empty band. This characteristic, although less marked, remain in the scattering by nearby carbon atoms, due to both the interaction with K along the projectile trajectory and the perturbed local density of states on the carbon atoms due to the adsorbate presence. In addition, the extended nature of the electronic structure of graphene allows for the emission of more energetic electrons.Fil: Iglesias García, Adalberto de Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Romero, M. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: García, Evelina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentin

    Hydrogen ion scattering from a potassium impurity adsorbed on graphene

    Get PDF
    In this work we study the charge exchange process in the scattering of protons by potassium atoms adsorbed on a graphene surface in a low coverage limit. Both, the projected density of states on the alkaline atom site and the final charge states of the hydrogen projectile are calculated by considering the electronic Coulomb repulsion in the s-valence orbital. The inner 3p and 3s states of potassium are included and the local perturbations of the density matrix on the surrounding C atoms are also considered. The interacting systems are described by an Anderson Hamiltonian whose terms are calculated from the chemical properties of the atoms and the extended features of the graphene surface. The positive and negative ion fractions of hydrogen in the collision process are obtained from Keldysh-Green functions, which are calculated by employing the equation of motion method closed up to a second order in the atom-surface coupling term. It is found that the carbon atoms have nopossibility of a direct charge exchange process in a frontal collision of the proton with the K adatom, and that the K-3p band, broadened by the interaction with the graphene surface, provides an important source of electrons for the negative ionization of hydrogen, which is also promoted by the presence of a K-3s core state. The narrow 4s and 3p bands of the adsorbed potassium lead to an oscillatory dependence with the projectile incoming energy, of the probability for the three correlated charge states of hydrogen.Fil: Romero, Marcelo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Iglesias García, Adalberto de Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: García, Evelina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentin

    Ionic Hamiltonians for transition metal atoms: effective exchange coupling and Kondo temperature

    No full text
    An ionic Hamiltonian for describing the interaction between a metal and a d-shell transition metal atom having an orbital singlet state is introduced and its properties analyzed using the Schrieffer–Wolf transformation (exchange coupling) and the poor man's scaling method (Kondo temperature). We find that the effective exchange coupling between the metal and the atom has an antiferromagnetic or a ferromagnetic interaction depending on the kind of atomic fluctuations, either S → S − 1/ 2 or S → S + 1/ 2 , associated with the metal-atom coupling. We present a general scheme for all those processes and calculate, for the antiferromagnetic interaction, the corresponding Kondo-temperature.Fil: Flores, F.. Universidad Autónoma de Madrid; EspañaFil: Goldberg, Edith Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentin
    corecore