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Localized description of band structure effects on Li atom interaction with graphene
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We study theoretically the localized aspects of the interaction between an Li atom and graphene. To this end,
we use an ab initio calculation of the Hamiltonian terms within the Anderson model that allows us to take into
account the chemical properties of Li and C atoms and the two-dimensional band structure of graphene. In this
way, physical magnitudes of interest such as the hybridization function, the adatom spectral density and valence
occupation are calculated. We find that the interference between the adatom neighboring sites together with the
pronounced energy gap around the � point lead to negligible hybridization widths in a wide range of energies and
are practically not dependent on the adsorption site. Consequently, this very weak coupling regime makes possible
a local magnetic moment formation. Moreover, the strong suppression of the atom level broadening allows for
an explanation of the unexpected neutralization measured at low energies in experiments of Li+ scattering by a
highly oriented pyrolytic graphite surface.
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I. INTRODUCTION

The study of graphene has been motivated mostly by the
unusual nature of its effectively massless charge carriers,
the so-called Dirac fermions, that leads to exotic electronic
properties whose potential application for future nanometer-
scale devices is under extensive exploration.1 Although clean
bulk graphene may not be magnetic, there is a rich variety
of possibilities for magnetism when adatoms are added on
top of graphene. As an open surface, the use of scanning
tunneling microscopy (STM) probes2–4 allows for controlling
the position of adatoms with atomic precision5 and at the
same time switching the magnetic local moments on and off
by gating.6,7 Several previous theoretical studies based on
first-principles density-functional theory have been performed
to provide an atomic level understanding of the interactions
between adatoms and graphene. These works focused on the
stable configurations of alkali and transition metal adatoms on
graphene,8–14 charge transfer between graphene and metals,15

and magnetism.16 It was found that the adatoms studied from
groups I to III of the Periodic Table present ionic bonding,
and the adsorption is characterized by minimal change in the
graphene electronic states and large charge transfer. While for
transition, noble, and group IV metals, the bonding is covalent,
and the adsorption is characterized by strong hybridization
between adatom and graphene electronic states.

On the other hand, the spectral, thermodynamic and
scattering properties of a resonant s-wave magnetic impurity
absorbed on clean graphene have been studied by using the
Anderson Hamiltonian as the starting point.17,18 Very simple
parametrizations allowed for the description of the anomalous
level broadening of the adatom when it hybridizes equally
with the two graphene sublattices.18 In addition, a model
discussion based on the Anderson impurity coupled to an
electron bath with linearly vanishing density of states at
the Fermi level leads to Fano line shapes strongly different
from the antiresonances usually found on metal surfaces.
Furthermore, a realistic estimation of the Fano q factors
for Co on graphene and Co on Cu(111) was obtained

from density-functional calculations of the hybridization
functions.19

In this work we investigate theoretically the interaction of
atoms with graphene within the Anderson model framework.
Physical quantities of interest such as hybridization functions
and the spectral properties of the combined system can
be straightfordwardly obtained from this model,20–23 but a
quantitative determination of the physical magnitudes depends
strongly on how realistic the Hamiltonian parameters are.
We use in the present work a previously developed ab initio
calculation of the Anderson Hamiltonian terms, widely proved
in several atom-surface interacting systems.24–28 In this model
calculation the hybridization term is basically determined by
the extended features of the electronic band structure of the
solid and the localized nature of atom-atom interactions. In
this sense, graphene is an ideal surface to treat because of its
simple two-dimensional band structure that makes possible a
tight-binding analytical calculation of the eigenstates in the
case of only considering the π band. Within this description,
the interference between the different quantum mechanical
paths involving the adatom neighboring sites is easily taken
into account for the calculation of the Anderson hybridization
function.29 This function is a clue magnitude that allows
us to infer on the characteristics of the charge exchange
between atoms and surfaces in both adsorption and collision
processes. Specifically, the adatom level broadening, the
spectral properties, and the possibility of a local magnetic
moment are intimately related to the hybridization function.
In this paper we address the particular case of an Li atom
interacting with graphene. The stable configuration of Li on
graphene has been studied by several previous authors8,9,14

and it was found for 50% coverage that the hollow site
is lower in energy compared to the on-top site by only
0.046 eV (Ref. 14). Furthermore, Chan et al. (Ref. 9)
concluded that the binding was ionic in nature with charge
transferred from the Li to the graphene substrate without
significant change to the occupied graphene bands.

Our work is mainly motivated by recent ion-surface
scattering experiments. Large neutral fractions were found in
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the scattering of Li positive ions by a high oriented pyrolitic
graphite (HOPG) surface.28 The high neutralization has been
explained by the pronounced downshift of the Li ionization
level caused by the interaction with many atoms of the
surface. The Li positive ion is efficiently neutralized along
the incoming trajectory. As the atom motion leaving the surface
is slower, the electron loss to the empty band states is more
probable. Therefore, one would expect a decreasing neutral
fraction at low ion energies. This is not the experimental result
found, instead a nearly constant neutral fraction is observed at
low values of the velocity component normal to the surface.28

On the other hand, the increasing neutralization at low energies
found in the scattering of Li positive ions by a Cu(111)
surface30 has been associated with the presence of surface
energy band gaps.31 In fact, this collisional system has been
discussed within the Anderson model framework by using a
simple tight-binding model of the solid.32 It was found that
the presence of a surface gap maximum at the � point and
the Fermi level located inside it lead to a suppression of the
hybridization function in the vicinity of the Fermi energy. We
find a similar result in the case of Li interacting with graphene,
but in this combined system the energy gap has a more dramatic
effect on the hybridization width due to the two-dimensional
crystal structure of the surface.

The present manuscript is organized in the following
way. In Sec. II the Anderson interaction model is presented.
Afterward, the ab initio calculation of the Hamiltonian terms
and the tight-binding model for calculating the eigenstates and
eigenenergies of graphene are briefly discussed. Finally in this
section, we introduce the calculation of the local density of
states (LDOS) on the adatom. Section III is devoted to the
discussion of the results concerning with the hybridization
width, the spectral properties, the adatom valence occupation
and the neutral fraction in a time-dependent collisional
process. Section IV contains the conclusions.

II. THEORY

A. Interaction model

We want to describe the three possible charge states of the Li
atom (positive, neutral, and negative) when the valence 2s- is
only considered. In this case the Anderson model Hamiltonian
is the adequate one for describing the interaction with the
surface

Ĥ =
∑
�kn,σ

ε�kn,σ n̂�kn,σ +
∑

σ

(
εa + 1

2
Un̂aσ̄

)
n̂aσ

+
∑
�kn,σ

(
V σ

�kn,a
ĉ
†
�kn,σ

ĉa,σ + H.c.
)
. (1)

In the second quantization language used, ĉ
†
a,σ creates

one electron in the unique atomic orbital a considered with
spin projection σ and energy εa , ĉ

†
�kn,σ

creates one electron

in the n-band state with wave vector �k and spin projection
σ and energy ε�kn,σ ; n̂a,σ = ĉ

†
a,σ ĉa,σ , n̂�kn,σ = ĉ

†
�kn,σ

ĉ�kn,σ are
the number operators associated with the atomic orbital and
the band conduction states of the solid, respectively. The
main ingredients involved in the Anderson Hamiltonian are a

localized level with energy εa corresponding to the outermost
atomic shell, an on-site repulsion U representing the screened
Coulomb repulsion between a pair of electrons in the outermost
shell, and a hybridization matrix element V σ

�kn,a
between the

atomic state and the conduction states of the metal. An
important quantity in the Anderson model is the hybridization
width defined by the expression:

�σ
a (ε) = π

∑
�kn

∣∣V σ
�kn,a

∣∣2
δ(ε − ε�kn,σ ). (2)

The physics of the Anderson impurity model depends
continuously on the interplay between the hybridization
width and the interconfiguration energies εa and εa + U .
The hybridization width �σ

a (ε) is the imaginary part of the
adsorbate self-energy

�0σ (ω) =
∑
�kn

∣∣V σ
�kn,a

∣∣2

ω − ε�kn,σ + iη
,

in the U = 0 case. In this very simple case the real part
of �0σ (ω), evaluated in ω = εa , provides the atomic level
shift caused by the interaction with the band states; and
the hybridization width evaluated in the shifted atom energy
ε̃a = εa + Re�0σ (εa) measures the energy half-width of the
atomic resonance. These concepts continue being valid in the
interacting case (U �= 0) provided the adsorbate self-energy
can be assumed as �σ (ω) = �0σ (ω) + �U

σ (ω). Therefore, the
full potentiality of the Anderson model depends on a realistic
calculation of the hybridization matrix element V σ

�kn,a
.

B. Calculation of Hamiltonian terms by using
the bond-pair model

We used in this work a model Hamiltonian that was
previously developed to describe pairs of interacting atoms24

and then generalized to any atom-surface system by assuming
that one of the two atoms consists of a system having a
quasicontinuum of states. A symmetrically orthoghonalized33

mixed basis set of localized adatom orbitals and extended
surface states is used in this case to finally reduce the
Hamiltonian to the form of the Anderson model.25 The one-
electron hybridization term V σ

�kn,a
includes one and two electron

contributions determined by performing a mean field approx-
imation together with an overlap expansion of the many body
Hamiltonian. Basically the V σ

�kn,a
term is expanded accordingly

to the overlap expansion of the orthogonal �k and a states.
Afterward, a linear combination of atomic orbitals (LCAO)
expansion of the nonperturbed �k-surface states is performed by
approximating the three-center integrals consistently with the
overlap expansion. In this way the nondimeric contributions
are canceled and finally, the hybridization term is recovered
as a superposition of the atomic hopping integrals V

σ (dim)
i, �RS,a

calculated with functions only orthogonalyzed within each
dimeric subspace composed of the surface atom at �RS and the
adsorbate at �Ra

V σ
�kn,a

=
∑
i, �RS

c
�kn,σ
i ( �RS)V σ (dim)

i �RS,a
. (3)
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The coefficients c
�kn,σ
i ( �RS) are related with the LCAO

expansion of the unperturbed �k-surface states,

φ�kn,σ (�r) =
∑
i, �RS

c
�kn,σ
i ( �RS)ϕi(�r − �RS), (4)

and they determine the elements of the density matrix of the
unperturbed solid given by:

ρσ
i,j ( �RS, �RS ′ ; ε) =

∑
�kn

c
�kn,σ∗
i ( �RS)c

�kn,σ
j ( �RS ′ )δ(ε − ε�kn,σ ). (5)

The number of atoms of the surface contributing to the
expansion (4) depends on the magnitude of the atomic hopping
integral V

σ (dim)
i �RS,a

; and the weight of each dimeric contribution
is directly related to the band structure through the coefficient

c
�kn,σ
i .

The adsorbate energy level εa , calculated by the same proce-
dure, includes the orthogonalization effects and the adsorbate-
substrate two-electron interactions considered within a mean
field approximation.25

This bond-pair model has been able to reproduce, in a
quantitative fashion, the main properties of simple homonu-
clear diatomic molecules such as Li2, C2 (Ref. 26). It has also
allowed for a general satisfactory description of experimental
results in H+ and Li+ scattering by a HOPG surface.27,28 In
the last mentioned works the interference terms introduced by
the dependence of V σ

�kn,a
on the �k component parallel to the

surface were neglected.
In summary, for a proper calculation of the atom energy

level and the hybridization term V σ
�kn,a

, the bond-pair model
requires (i) a good atomic basis set for calculating the one
and two electron atomic integrals and (ii) an appropriate
description of the surface electronic structure based on a LCAO
expansion of the band states.

C. Electronic structure of graphene π band

In a graphene sheet, the carbon atoms are held together via
sp2-hybridized covalent bonds, while the electronic transport
takes place by hopping along π orbitals which can participate
in covalent bonding with adsorbates. The electrons in the
π band of graphene can be described using a tight-binding
Hamiltonian within the first-neighbors approximation

Ĥ = −t
∑
i∈A

∑
�δj (j=1,3)

1

V

∑
�k,�k′

[ei(�k−�k′)· �Ri e−i�k′ ·�δj

× |�k,A〉〈�k′,B| + H.c.]. (6)

V is the unit cell volume, and the three nearest-neighbor
vectors in real space shown in Fig. 1 are given by �δ1 =
a
2 (1,

√
3); �δ2 = a

2 (1,−√
3); �δ3 = −a(1,0), being a = 1.42 Å,

and the value of the hopping t is assumed equal to 2.8 eV.1

By considering in Eq. (6) the following identity,

1

V

∑
i∈A

ei(�k−�k′)· �Ri = δ(�k − �k′) (7)

FIG. 1. (Color online) Honeycomb lattice and its Brillouin zone.
(a) Lattice structure of graphene, made out of two interpenetrating
triangular lattices (�a1 = �δ1 − �δ3, �a2 = �δ2 − �δ3 are the primitive
vectors). (b) Corresponding Brillouin zone. The Dirac cones are
located at the K and K ′ points.

we arrive to the expression

Ĥ =
∑

�k
[ξ�k|�k,A〉〈�k,B| + ξ ∗

�k |�k,B〉〈�k,A|], (8)

where the following magnitude has been introduced

ξ�k = −t
∑

�δj (j=1,3)

e−i�k·�δj . (9)

A diagonalization procedure finally gives the energy eigen-
values (introducing now the spin index),

ε�kn,σ = ±
√

ξ�kξ
∗
�k . (10)

and the eigenvectors written as a linear combination of atomic
pz orbitals centered on the C atoms of graphene (LCAO
expansion)

φ�kn,σ (�r) = 1√
2N

∑
j

[
± ξ�k

|ξ�k|
e−i�k· �RA

j ϕpz

(�r − �RA
j

)

+ e−i�k· �RB
j ϕpz

(�r − �RB
j

)]
. (11)
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In Eqs. (10) and (11) the minus sign applies to the lower
bonding-like π band (n = 1) and the plus sign to the upper
antibonding-like π∗ band (n = 2).

D. Calculation of the local density of states
projected on the adsorbate

The density of states at the adsorbate is calculated as

ρaσ (ω) = 1

π
ImGaσ (ω). (12)

The required Green function,

Gaσ (t,t ′) = i�(t ′ − t)〈{ĉ†a,σ (t ′),ĉa,σ (t)}〉, (13)

is solved by using the equations of motion method (EOM)
accordingly to the Anderson Hamiltonian [Eq. (1)]34 We used
the criterion of closing the EOM by ensuring a strict second-
order calculation in the hopping parameter V σ

�kn,a
. Thus, the

following expression is found (ω̃ = ω − iη):

Gaσ (ω) = 1 − 〈n̂a,σ̄ 〉
ω̃ − εa − �0σ (ω) + U�≺σ̄ (ω)

ω̃−εa−U−�0σ (ω)−�1σ̄ (ω)

+ 〈n̂a,σ̄ 〉
ω̃ − εa − U − �0σ (ω) + U [�≺σ̄ (ω)−�1σ̄ (ω)]

ω̃−εa−�0σ (ω)−�1σ̄ (ω)

+ UIσ̄ (ω)

[ω̃ − εa − �0σ (ω)] [ω̃ − εa − U − �0σ (ω) − �1σ̄ (ω)] + U�≺σ̄ (ω)
, (14)

where 〈n̂a,σ 〉 is the adatom state occupation per spin and the
quantity Iσ (ω) has been defined as

Iσ (ω) =
∑
�kn

V σ∗
�kn,a

〈ĉ†a,σ ĉ�kn,σ 〉
ω̃ − ε�kn,σ

−
∑
�kn

V σ
�kn,a

〈ĉ†�kn,σ
ĉa,σ 〉

ω̃ + ε�kn,σ − εA

,

being εA = 2εa + U , and the introduced self-energies are

�0σ (ω) =
∑
�kn

∣∣V σ
�kn,a

∣∣2

ω̃ − ε�kn,σ

,

�≺σ (ω) =
∑
�kn

∣∣V σ
�kn,a

∣∣2〈n̂�kn,σ 〉
[

1

ω̃ − ε�kn,σ

+ 1

ω̃ + ε�kn,σ − εA

]
,

�1σ (ω) =
∑
�kn

∣∣V σ
�kn,a

∣∣2

[
1

ω̃ − ε�kn,σ

+ 1

ω̃ + ε�kn,σ − εA

]
,

(15)

In Eq. (15),

〈n̂�kn,σ 〉 = f≺(ε�kn,σ ) = 1

1 + e
ε�kn,σ

−εF

kB T

, (16)

is the Fermi distribution for a temperature T in the case of a
metallic surface.

The Green function given by Eq. (14) provides a very
appropriate description of the correlated atomic state in
the case of a strong Coulomb repulsion U compared with
the hybridization width �σ

a (ε) (Ref. 34). It also reproduces
correctly the U = 0 limit and the isolated atom case V = 0.

III. RESULTS AND DISCUSSION

A. Hamiltonian terms

We used the atomic basis set for C and Li atoms provided
by Huzinaga et al.,35,36 including a p polarization function in
the case of Li.

In Fig. 2 the ionization and affinity levels of Li, measured
with respect to the Fermi level, are shown as a function of
the normal distance (z) to the surface. They are obtained as
the difference between the total energies of the system with
N + 1 and N electrons calculated without allowing charge
exchange.28 The correct assymptotic values of −5.39 and
0.6 eV with respect to the vacuum level are recovered for
the ionization and affinity levels, respectively. The effect of
the long-range interactions is introduced by considering the
image potential defining the behavior of the energy level
for large normal distances. We can see from Fig. 2 that the
effective Coulomb repulsion U in the atomic state is reduced to
values around 2 eV near the surface. The energy levels for two

π 

FIG. 2. Energy levels of Li atom as a function of the distance to
the surface. Black (grey) lines are the ionization (affinity) level. Solid
line for the adatom placed on top of a carbon atom and dash line for
the adatom located on the center of an hexagon. The dot-dash line
is the ionization level by considering the interaction with only the
nearest C atom in the on top position. The shadowed region is the
LDOS of the π band calculated in this work. It is also shown the s and
p LDOS of graphene calculated as in Refs. 37 and 38. The energies
are referred to the Fermi energy set equal to 0.
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FIG. 3. (Color online) The hopping term VLi(s)−C(pz) as a function
of the distance (R) between the Li atom at z = 3 a.u. and the C atoms
of the successive neighbor shells on the surface (see inset). Full circles
correspond to the on-top position and empty symbols to the on-center
position.

adsorption sites are depicted: the adatom placed either on top
of a carbon atom or located in the center of an hexagon. In the
same figure we show the evolution of the ionization level when
the interaction with only one surface atom is considered. The
comparison between both evolutions shows the importance of
considering the interaction with all the surface atoms that the
adatom can “see.” The downshift of the energy level close to
the surface is due to the interaction with several atoms of the
solid, originated in the extension of the Li atomic states, and
the rather compact spatial distribution of C atoms in graphene.
The energy level variation is finally determined by a detailed
balance between attractive and repulsive terms.

The atomic coupling between the Li-2s and C-2pz states
[VLi(s)−C(pz)] is shown in Fig. 3 as a function of the distance
between the Li atom positioned at z = 3 a.u. and the carbon
atoms belonging to the different neighbor shells on the surface
(first, second, and so on). In the on-top position the coupling
with one atom of the 11th neighbor shell is 100 times smaller
than the one with the first neighbor.

The |V σ
�kn,a

|2 calculated as

∣∣V σ
�kn,a

∣∣2 =
∣∣∣∣∣ 1√

2

∑
j

[
± ξ�k

|ξ�k|
e−i�k· �RA

j VLi(s)−C(pz)
( �RA

j

)

+ e−i�k· �RB
j VLi(s)−C(pz)

( �RB
j

)]∣∣∣∣∣
2

, (17)

is shown in Fig. 4 as a function of the modulus of �k for the
case of Li on top. It is compared with the calculation including
the interaction only with the C atom below the Li, and the
one including the four nearest carbons. The results for the
two bands are depicted, being also included the energy band
structure given by Eq. (10).

It can be noticed from Fig. 4 the remarkable peaked
structure of |V σ

�kn,a
|2 around the � point in the case of the

FIG. 4. (a) The square modulus of V σ
�kn,a

[Eq. (17)] as a function

of |�k| for the Li on top at z = 3.6 a.u. Black lines correspond to the
valence band n = 1, and grey lines to the conduction band n = 2.
Calculation including all the C atoms that are capable of interacting
(solid lines); the one including the four nearest neighbors (dashed
line); and the calculation including only the C below the Li atom
(dotted line). The inset is a blow up to show the results for n = 2.
(b) The band energies ε�kn,σ as a function of |�k| [Eq. (10)].

valence band n = 1, when all the C atoms that can interact with
Li are included. The inclusion of only the four nearest-neighbor
carbons leads to a more extended function in |�k| which is
approximately five times smaller at |�k| = 0. In the case of the
antibonding-like band n = 2 a practically negligible |V σ

�kn,a
|2

is found for any value of |�k|. This result is better seen in Fig. 5
where contour plots of |V σ

�kn,a
|2 are shown for the two bands

(n = 1, 2). In the case of n = 2 the negligible values show a
maximum near the M points (in the paths from � to M).

The observed behavior of |V σ
�kn,a

|2 when many C atoms
are involved in the interaction with the adatom tends to the
limit behavior obtained in the case of a very large number of C
atoms interacting with similar coupling values. By assuming in
Eq. (17) VLi(s)−C(pz)( �RA,B

j ) ≈ Va and using the identity given
by Eq. (7), we obtain

∣∣V σ
�kn,a

∣∣2 ≡ V 2
a

2
|V δ(�k) [∓1 + 1] |2.

In this very extreme limit situation we have that |V σ
�kn,a

|2
is zero in the case of the antibonding n = 2 band, while it
becomes a delta function in �k = 0 for the bonding-like band.
In what follows we will see how these features are reflected in
the energy dependence of the hybridization width.
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FIG. 5. Surface contour plot of |V σ
�kn,a

|2 as a function of the �k
components, for Li on top at z = 3.6 a.u. The grey scale is used to
indicate the variation of the square modulus of V σ

�kn,a
. (a) Conduction

band n = 2 and (b) valence band n = 1.

B. Hybridization width

Figures 6 and 7 show �σ
a (ω) = Im�0σ (ω) for the Li atom

either on top of a carbon atom or in the center of an hexagon
at different normal distances z to the surface.

In all cases the hybridization width presents a pronounced
maximum at the bottom of the valence band (ω ≈ ε�k=0,n=1)
when all the neighbor atoms that interact effectively with Li are
included. The narrow function decreases rapidly for increasing
energies accordingly to the |V σ

�kn,a
|2 behavior and the energy

gap between the bonding and antibonding band states (see
Fig. 4). Very small values of the hybridization width in the
vicinity of the Dirac point are found in all the cases. The
proportionality of �σ

a (ω) to the LDOS of graphene is ensured
either in the case of considering the interaction with only
one C atom (the nearest one in the on-top position), or by
disregarding the interference between the quantum mechanical
paths involving the different neighboring sites. For the Li on
top at 3 a.u. it can be observed [inset of Fig. 6(a)] a linear
dependence of �σ

a (ω) with energy only very close to the Fermi
level. However, at 6 a.u. this linear energy dependence is lost
when including all the C atoms which effectively interact. The
differences observed are due to the distance behavior of the
coupling term shown in Fig. 3. Note that, in the case of Li at
3 a.u., the coupling with the first neighbor is practically the
same as the one with the second neighbors.

 Ξ
0σ

 (
)

ω (

 Ξ
0σ

 (
)

 Ξ
0 (

)

ω (

ω (

 Ξ
0 (

)

FIG. 6. The hybridization width as a function of energy in the
case of Li on top of a C atom for two normal distances to the surface:
(a) z = 3 a.u., (b) z = 6 a.u.. Solid line includes the interaction with
all the surface atoms which are able of coupling; dashed-dot-dot line
to the interaction with the four nearest C atoms, and dashed line to
the interaction with only the C atom below the Li. In the inset the
details around the Fermi level (εF = 0) are shown.

In the symmetric case, the Li atom in the center of a
hexagon, the inclusion of only the six nearest C atoms leads to
a hybridization width that scales with |ω|3 for energy values
close to the Fermi energy18 [insets of Figs. 7(a) and 7(b)].
This broadening function becomes even more anomalous when
the effective coupling between the adatom and the surface
atoms extends far away from the first neighbors, as can be
observed in Fig. 7. We can see from Figs. 6 and 7 that at
z = 6 a.u. the hybridization widths for the on-top and the
on-center adsorption sites do not differ substantially if all
the active neighbors are considered. We found that this is,
in general, true for normal distances larger than 4 a.u., for
which the atomic coupling term is a monotonous decreasing
function of distance in both cases (see Fig. 3). Hence, the
broadening of the adatom ionization level given by �σ

a (εa) in
both adsorption sites is very similar, as is observed in Fig. 8.
In the same figure the level broadening is depicted in the case
of considering only the nearest C atom in the on-top position,
which results to be nearly six times larger for z > 4 a.u. In
Fig. 8 we include for comparison the calculation of �σ

a (εa)
by disregarding the interference between the different paths
involving the neighboring sites. We can see that this calculation
overestimates notably (by orders of magnitude) the level width
for large distances.
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FIG. 7. The hybridization width as a function of energy in the case
of Li on the center of an hexagon of C atoms for two normal distances
to the surface: (a) z = 3 a.u., (b) z = 6 a.u. Solid line includes the
interaction with all the surface atoms which are able of coupling,
dashed line to the interaction with the six nearest C atoms. In the
inset the details around the Fermi level (εF = 0) are shown.

All the peculiarities observed have their origin in the strong
localization of |V σ

�kn,a
|2 and the pronounced energy gap around

�k = 0. On the other hand, this fact is related to the interaction
of Li with several atoms provided the extension of the Li-2s

and C-2pz atomic states. Therefore, the hybridization widths
are strongly dependent on the symmetry and range of the
atom-atom interactions.

In Fig. 9 we compare the hybridization widths for the cases
of Li-2s and Li-2py states. It is observed that the hybridization
width is a function more extended in energy with larger values
around the Fermi level in the case of the interaction with Li-2py

state [inset in Fig. 9(a)]. This is an expected result taking into
account that the coupling with all the C atoms located at x = 0
is inhibited by symmetry, leading in this form to a less localized
hybridization term at �k = 0. Accordingly to this analysis, one
concludes that the excited state of Li should be considered for
a more correct description of the interaction with graphene.

C. Local density of states on the adatom and valence occupation

All the calculations here are performed by considering T =
0K . The strongly reduced hybridization in a wide range of
energy values leads to very narrow resonances in the local
density of states ρaσ (ω) [Eq. (14)], as we can see in Fig. 10(a)
for the case of Li on the center of the hexagon (z = 4 a.u.). The

FIG. 8. The ionization level half-width (the hybridization width
evaluated in the atom energy level) as a function of normal distance
to the surface: black solid line corresponds to the on top position, and
black dashed line to the on center one. Grey solid line is the calculation
by considering only the nearest C atom in the on top adsorption site;
grey dashed line is the calculation with all the active carbons but
disregarding the interference between the different paths involving
the neighboring sites. A blow up of the large distance behavior is
shown in the inset.

FIG. 9. Hybridization widths as a function of energy for the Li-2s

(black line) and Li-2py (grey line) at a distance z = 3 a.u. (a) On top
and (b) on center of the hexagon adsorption sites. The inset in (a)
shows the details around the Fermi level.
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FIG. 10. (a) Local density of states on the adatom as a function of
energy in the case of Li at 4 a.u. in the on-center position: black solid
line corresponds to finite U , and grey lines to U = 0 by considering
either the ionization level (dashed line) or the affinity level (dot-
dashed line). In the inset: the resonances at the bottom of the valence
band. (b) The real (grey line) and the imaginary (black line) parts of
�0σ (ω). The straight lines correspond to ω − εa(dashed line) and to
ω − εa − U (solid line); the position of the resonances are indicated
by black circles, and the black arrows indicate the ionization and
affinity energies of Li at this distance from the surface.

U = 0 calculation by considering either the ionization level or
the affinity one is also shown in the same figure. Both finite
and zero U calculations show similar trends in the evolution
of the adatom s-state occupation; only slight differences are
found in the case of the resonance energy positions. Additional
resonances appear at the bottom and out of the valence band
(ω � −8.4 eV) [see inset of Fig. 10(a)] due to the smooth
fall down to zero of Im�0σ (ω) and the energy behavior of
Re�0σ (ω) shown in Fig. 10(b). In this sense a non-Markovian
environment is controlling the decay dynamics of the local
excitation in this case, where a “quantum diffusion” described
by a return term brings out the details of the spectral structure
of the environment.39,40

Anderson showed that when εa is below the Fermi energy
εF and the energy of the doubly occupied state εa + U is larger
than εF , a magnetic state is possible if U is sufficiently large
and/or �σ

a sufficiently small.29 In the case of Li interacting
with graphene the requirement of a hybridization width small
enough to allow for a magnetic state is fulfilled. The evolution

ε

ρ
σ

ω

FIG. 11. The local density of states on the Li atom located at the
on top position at distance values z = 3.6 a.u. (black dashed line),
4 a.u. (black solid line), and 4.4 a.u. (grey solid line). In the inset:
occupation of Li state as a function of εa/U + 0.5.

with distance of the local density of states in the on top adsorp-
tion geometry is shown in Fig. 11. It can be observed in the
inset that a local magnetic moment exists for −2.4< εa/U <

−0.44, which corresponds to 3.6 a.u. < z < 4.4 a.u.. Elec-
tronic transport measurements performed in this very weakly
coupled system would show a typical Coulomb blockade
behavior.

D. Neutral fraction in ion scattering

In the case of Li+ scattering by a graphene surface, the
neutral fraction is calculated by using the time-dependent
Green function formalism in the U = 0 limit.28

In dynamical ion-surface scattering processes we are
interested in calculating the probability of ion neutraliza-
tion. Within the spinless approximation, this is given by
the time-dependent average atom state occupation 〈na(t)〉 =
〈c†a(t)ca(t)〉. This quantity is obtained from the following
Green function at equal time values:

Faa(t,t ′) = i〈�|[c†a(t ′),ca(t)]|�〉 → i[2〈na(t)〉 − 1]t→t ′ ,

where [ ] indicates the commutator, and � is the dynamical
state in the Heisenberg picture.

In the present calculation the ion trajectory z = z(t) is
assumed normal to the surface with a turning point chosen at
a distance of 3 a.u. to involve only the π band in the scattering
process. The ingoing and exit velocity values are equal to
the corresponding normal components of the experimental
setup. The scattering angle in the experiment is equal to
45◦, and the projectile kinetic energy is 2 keV.28 The neutral
fraction is shown in Fig. 12(a) as a function of the exit
angle measured respect to the surface plane. The Li+ ions are
partially neutralized close to the surface due to the downshift
of the ionization energy (Fig. 2). The level width is strongly
reduced at large distances when the contribution of all the
active C atoms is considered [Fig. 12(b)]. This suppresses the
electron loss far from the surface leading to either a constant
or an increasing neutral fraction at low velocities. In Fig. 12(a)
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FIG. 12. (a) Full circles are the neutral fraction calculated by
considering the C-C interference terms, while the full squares are
the calculation by disregarding the interference terms. The crossed
triangles are the experimental data of Ref. 28 obtained for 2 keV Li+

scattering by a HOPG surface (scattering angle equal to 45◦). (b) The
energy level and its width shown as error bars in the case of including
correctly the interaction with all the active C atoms; (c) the same as
in (b) but disregarding the interference between C atoms.

we show the calculation in which we neglect the interferences
between the C atoms interacting with the Li+ projectile. In this
case the neutral fraction falls down at low velocities because

the level broadening is large enough to allow for a more
efficient electron loss process as the ion velocity decreases
[see Fig. 12(c)]. The experimental values of the Li neutral
fraction correspond to a HOPG surface whose crystal structure
is basically a staggered arrangement of C atoms in weakly
coupled parallel layers of graphene. Nevertheless, at low exit
energies the charge state of the projectile is defined far from
the surface and only the C atoms of the surface layer and the
π band are involved (see Fig. 2). Therefore, the suppression of
the hybridization width found in the case of Li interacting with
the π band of graphene can explain the nearly constant neutral
fraction measured for small exit angles in the Li+ scattering
by HOPG.

IV. CONCLUSION

We have studied the interaction of an Li atom with graphene
by using the Anderson model and an ab initio calculation of
the hybridization term. In this form, the chemical properties
of the interacting atoms and the two dimensional features
of the graphene band structure are properly accounted for.
We find that the interaction of Li with graphene involves
several atoms of the solid due to the extension of the Li-2s

and C-2pz atomic states, and the rather compact spatial
distribution of C atoms in the surface. In consequence, the
hybridization width is found to be a peaked function at the
bottom band energy which decays rapidly to negligible values
for larger energies. In addition, the level broadening is not
strongly dependent on the adsorption site, and a local magnetic
moment formation is possible within this very weak coupling
regime. Furthermore, the high neutralization measured in low
energy ion scattering experiments can also be explained by the
negligible hybridization width around the Dirac point. Thus,
we conclude that the spectral features of atoms interacting
with graphene are determined by the symmetry and chemical
properties of the involved atomic states, and the energy gap of
the π band structure.
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