2,619 research outputs found

    Lattice-corrected strain-induced vector potentials in graphene

    Full text link
    The electronic implications of strain in graphene can be captured at low energies by means of pseudovector potentials which can give rise to pseudomagnetic fields. These strain-induced vector potentials arise from the local perturbation to the electronic hopping amplitudes in a tight-binding framework. Here we complete the standard description of the strain-induced vector potential, which accounts only for the hopping perturbation, with the explicit inclusion of the lattice deformations or, equivalently, the deformation of the Brillouin zone. These corrections are linear in strain and are different at each of the strained, inequivalent Dirac points, and hence are equally necessary to identify the precise magnitude of the vector potential. This effect can be relevant in scenarios of inhomogeneous strain profiles, where electronic motion depends on the amount of overlap among the local Fermi surfaces. In particular, it affects the pseudomagnetic field distribution induced by inhomogeneous strain configurations, and can lead to new opportunities in tailoring the optimal strain fields for certain desired functionalities.Comment: Errata for version

    Rapid mapping of digital integrated circuit logic gates via multi-spectral backside imaging

    Full text link
    Modern semiconductor integrated circuits are increasingly fabricated at untrusted third party foundries. There now exist myriad security threats of malicious tampering at the hardware level and hence a clear and pressing need for new tools that enable rapid, robust and low-cost validation of circuit layouts. Optical backside imaging offers an attractive platform, but its limited resolution and throughput cannot cope with the nanoscale sizes of modern circuitry and the need to image over a large area. We propose and demonstrate a multi-spectral imaging approach to overcome these obstacles by identifying key circuit elements on the basis of their spectral response. This obviates the need to directly image the nanoscale components that define them, thereby relaxing resolution and spatial sampling requirements by 1 and 2 - 4 orders of magnitude respectively. Our results directly address critical security needs in the integrated circuit supply chain and highlight the potential of spectroscopic techniques to address fundamental resolution obstacles caused by the need to image ever shrinking feature sizes in semiconductor integrated circuits

    On the bispectrum of COBE and WMAP

    Full text link
    The COBE-DMR 4-year maps displayed a strong non-Gaussian signal in the ``inter-scale'' components of the bispectrum: their observed values did not display the scatter expected from Gaussian maps. We re-examine this and other suggested non-Gaussian features in the light of WMAP. We find that they all disappear. Given that it was proved that COBE-DMR high noise levels and documented systematics could at most {\it dilute} the observed non-Gaussian features, we conclude that this dataset must have contained non-negligible undocumented systematic errors. It turns out that the culprit is a combination of QuadCube pixelization and data collected during the ``eclipse season''.Comment: 4 pages, 4 figure, MNRAS submissio

    “Am I Telling the Story Right?” Poetry, Community, and Trauma

    Get PDF
    The Hill District of Pittsburgh, Pennsylvania (USA) is a once vibrant community that experienced socioeconomic decline through urban renewal polices and related factors. This article presents poems constructed from interviews with women who considered the Hill District to be their home. Interviews were completed as part of an undergraduate-level community-engaged learning course in collaboration with a local agency. One component of the course was a public reading, during which the poems were shared with members of the community and the University. The poems were created through use of the Listening Guide, a feminist relational method. These emotionally resonant poems, known as I poems, attend to the subjective experience of each participant by focusing on her use of “I” throughout the interview transcripts. While individual in nature, these poems are inseparable from the historical trauma the Hill District has experienced. Seen through the lens of root shock, interpersonal and intergenerational traumas are also the trauma of the Hill District. Poetic inquiry provides an avenue for connecting individual experience with the larger community story

    Using Astrometry to Deblend Microlensing Events

    Get PDF
    We discuss the prospect of deblending microlensing events by observing astrometric shifts of the lensed stars. Since microlensing searches are generally performed in very crowded fields, it is expected that stars will be confusion limited rather than limited by photon statistics. By performing simulations of events in crowded fields, we find that if we assume a dark lens and that the lensed star obeys a power law luminosity function, n(L)Lβn(L)\propto L^{-\beta}, over half the simulated events show a measurable astrometric shift. Our simulations included 20000 stars in a 256×256256\times 256 Nyquist sampled CCD frame. For β=2\beta=2, we found that 58% of the events were significantly blended (F/Ftot0.9)(F_{\ast}/F_{tot}\leq 0.9), and of those, 73% had a large astrometric shift (0.5pixels)(\geq 0.5 pixels). Likewise, for β=3\beta=3, we found that 85% of the events were significantly blended, and that 85% of those had large shifts. Moreover, the shift is weakly correlated to the degree of blending, suggesting that it may be possible not only to detect the existence of a blend, but also to deblend events statistically using shift information.Comment: 24 pages, 7 postscript Figure

    Monolayer MoS2 strained to 1.3% with a microelectromechanical system

    Full text link
    We report on a modified transfer technique for atomically thin materials integrated onto microelectromechanical systems (MEMS) for studying strain physics and creating strain-based devices. Our method tolerates the non-planar structures and fragility of MEMS, while still providing precise positioning and crack free transfer of flakes. Further, our method used the transfer polymer to anchor the 2D crystal to the MEMS, which reduces the fabrication time, increases the yield, and allowed us to exploit the strong mechanical coupling between 2D crystal and polymer to strain the atomically thin system. We successfully strained single atomic layers of molybdenum disulfide (MoS2) with MEMS devices for the first time and achieved greater than 1.3% strain, marking a major milestone for incorporating 2D materials with MEMS We used the established strain response of MoS2 Raman and Photoluminescence spectra to deduce the strain in our crystals and provide a consistency check. We found good comparison between our experiment and literature.Published versio

    Intrinsic Optical Transition Energies in Carbon Nanotubes

    Full text link
    Intrinsic optical transition energies for isolated and individual single wall carbon nanotubes grown over trenches are measured using tunable resonant Raman scattering. Previously measured E22_S optical transitions from nanotubes in surfactants are blue shifted 70-90 meV with respect to our measurements of nanotubes in air. This large shift in the exciton energy is attributed to a larger change of the exciton binding energy than the band-gap renormalization as the surrounding dielectric constant increases.Comment: Due to a mistake, a different paper was submitted as "revised v2". This is a re-submission of the origional version in order to correct the mistak
    corecore