591 research outputs found

    Transport properties of clean and disordered Josephson junction arrays

    Full text link
    We investigate the influence of quantum fluctuations and weak disorder on the vortex dynamics in a two-dimensional superconducting Berezinskii-Kosterlitz-Thouless system. The temperature below which quantum fluctuations dominate the vortex creep is determined, and the transport in this quantum regime is described. The crossover from quantum to classical regime is discussed and the quantum correction to the classical current-voltage relation is determined. It is found that weak disorder can effectively reduce the critical current as compared to that in the clean system.Comment: 4 pages, 2 figure

    Non-exponential relaxation and hierarchically constrained dynamics in a protein

    Full text link
    A scaling analysis within a model of hierarchically constrained dynamics is shown to reproduce the main features of non-exponential relaxation observed in kinetic studies of carbonmonoxymyoglobin.Comment: 4 pages, 3 figures in text. Reference errors have been correcte

    Nuclear-resonant electron scattering

    Full text link
    We investigate nuclear-resonant electron scattering as occurring in the two-step process of nuclear excitation by electron capture (NEEC) followed by internal conversion. The nuclear excitation and decay are treated by a phenomenological collective model in which nuclear states and transition probabilities are described by experimental parameters. We present capture rates and resonant strengths for a number of heavy ion collision systems considering various scenarios for the resonant electron scattering process. The results show that for certain cases resonant electron scattering can have significantly larger resonance strengths than NEEC followed by the radiative decay of the nucleus. We discuss the impact of our findings on the possible experimental observation of NEEC.Comment: 24 pages, 2 plots, 5 table

    Theory of nuclear excitation by electron capture for heavy ions

    Full text link
    We investigate the resonant process of nuclear excitation by electron capture, in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy ion collision systems

    The Order of Phase Transitions in Barrier Crossing

    Full text link
    A spatially extended classical system with metastable states subject to weak spatiotemporal noise can exhibit a transition in its activation behavior when one or more external parameters are varied. Depending on the potential, the transition can be first or second-order, but there exists no systematic theory of the relation between the order of the transition and the shape of the potential barrier. In this paper, we address that question in detail for a general class of systems whose order parameter is describable by a classical field that can vary both in space and time, and whose zero-noise dynamics are governed by a smooth polynomial potential. We show that a quartic potential barrier can only have second-order transitions, confirming an earlier conjecture [1]. We then derive, through a combination of analytical and numerical arguments, both necessary conditions and sufficient conditions to have a first-order vs. a second-order transition in noise-induced activation behavior, for a large class of systems with smooth polynomial potentials of arbitrary order. We find in particular that the order of the transition is especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version accepted for publication by Phys. Rev.

    Nuclear effects in atomic transitions

    Full text link
    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.Comment: review article, 53 pages, 14 figure

    Photon angular distribution and nuclear-state alignment in nuclear excitation by electron capture

    Get PDF
    The alignment of nuclear states resonantly formed in nuclear excitation by electron capture (NEEC) is studied by means of a density matrix technique. The vibrational excitations of the nucleus are described by a collective model and the electrons are treated in a relativistic framework. Formulas for the angular distribution of photons emitted in the nuclear relaxation are derived. We present numerical results for alignment parameters and photon angular distributions for a number of heavy elements in the case of E2 nuclear transitions. Our results are intended to help future experimental attempts to discern NEEC from radiative recombination, which is the dominant competing process

    Finite Temperature Theory of Metastable Anharmonic Potentials

    Full text link
    The decay rate for a particle in a metastable cubic potential is investigated in the quantum regime by the Euclidean path integral method in semiclassical approximation. The imaginary time formalism allows one to monitor the system as a function of temperature. The family of classical paths, saddle points for the action, is derived in terms of Jacobian elliptic functions whose periodicity sets the energy-temperature correspondence. The period of the classical oscillations varies monotonically with the energy up to the sphaleron, pointing to a smooth crossover from the quantum to the activated regime. The softening of the quantum fluctuation spectrum is evaluated analytically by the theory of the functional determinants and computed at low TT up to the crossover. In particular, the negative eigenvalue, causing an imaginary contribution to the partition function, is studied in detail by solving the Lam\`{e} equation which governs the fluctuation spectrum. For a heavvy particle mass, the decay rate shows a remarkable temperature dependence mainly ascribable to a low lying soft mode and, approaching the crossover, it increases by a factor five over the predictions of the zero temperature theory. Just beyond the peak value, the classical Arrhenius behavior takes over. A similar trend is found studying the quartic metastable potential but the lifetime of the latter is longer by a factor ten than in a cubic potential with same parameters. Some formal analogies with noise-induced transitions in classically activated metastable systems are discussed.Comment: European Physical Journal B EDP Sciences, Societ`a Italiana di Fisica, Springer-Verlag 200

    Lasers as a Bridge between Atomic and Nuclear Physics

    Get PDF
    This paper reviews the application of optical and UV laser radiation to several topics in low-energy nuclear physics. We consider the laser-induced nuclear anti-Stokes transitions, the laser-assisted and the laser-induced internal conversion, and the Electron Bridge and Inverse Electron Bridge mechanisms as tools for deexciting and exciting of low-lying nuclear isomeric states. A study of the anomalous, by low-lying, nuclear isomeric states (on an example of the 229^{229}Th nucleus) is presented in detail.Comment: 67 pages, Tex, 18 figures available upon request from [email protected]

    Application of the zero-range potential model to positron annihilation on molecules

    Full text link
    In this paper we use a zero-range potential (ZRP) method to model positron interaction with molecules. This allows us to investigate the effect of molecular vibrations on positron-molecule annihilation using the van der Waals dimer Kr2 as an example. We also use the ZRP to explore positron binding to polyatomics and examine the dependence of the binding energy on the size of the molecule for alkanes. We find that a second bound state appears for a molecule with ten carbons, similar to recent experimental evidence for such a state emerging in alkanes with twelve carbons.Comment: 14 pages, 6 figures, to be published in Nuclear Instruments and Methods
    • …
    corecore