8,734 research outputs found
Competing magnetic interactions in CeNi9-xCoxGe4
CeNi9Ge4 exhibits outstanding heavy fermion features with remarkable
non-Fermi- liquid behavior which is mainly driven by single-ion effects. The
substitution of Ni by Cu causes a reduction of both, the RKKY coupling and
Kondo interaction, coming along with a dramatic change of the crystal field
(CF) splitting. Thereby a quasi-quartet ground state observed in CeNi9Ge4
reduces to a two-fold degenerate one in CeNi8CuGe4. This leads to a
modiffcation of the effective spin degeneracy of the Kondo lattice ground state
and to the appearance of antiferromagnetic (AFM) order. To obtain a better
understanding of consequences resulting from a reduction of the effective spin
degeneracy, we stepwise replaced Ni by Co. Thereby an increase of the Kondo and
RKKY interactions through the reduction of the effective d-electron count is
expected. Accordingly, a paramagnetic Fermi liquid ground state should arise.
Our experimental studies, however, reveal AFM order already for small Co
concentrations, which becomes even more pronounced with increasing Co content
x. Thereby the modiffcation of the effective spin degeneracy seems to play a
crucial role in this system
Antiferromagnetic behavior in CeCoGe
We investigate the novel intermetallic ternary compounds
\emph{R}CoGe with \emph{R} = La and Ce by means of -ray
diffraction, susceptibility and specific heat measurements. CeCoGe
crystallizes in the space group 4/ and is characterized by the
coexistence of two different magnetic sublattices. The Ce-based sublattice,
with an effective moment close to the expected value for a Ce-ion,
exhibits a magnetically ordered ground state with K. The
Co-based sublattice, however, exhibits magnetic moments due to itinerant 3
electrons. The magnetic specific heat contribution of the Ce-sublattice is
discussed in terms of a resonance-level model implying the interplay between an
antiferromagnetic phase transition and the Kondo-effect and an underlying
Schottky-anomaly indicating a crystal field level scheme splitting into three
twofold degenerated micro states ( K, K).Comment: 4 pages, 3 figures, conference SCES0
Suspension systems for ground testing large space structures
A research program is documented for the development of improved suspension techniques for ground vibration testing of large, flexible space structures. The suspension system must support the weight of the structure and simultaneously allow simulation of the unconstrained rigid-body movement as in the space environment. Exploratory analytical and experimental studies were conducted for suspension systems designed to provide minimum vertical, horizontal, and rotational degrees of freedom. The effects of active feedback control added to the passive system were also investigated. An experimental suspension apparatus was designed, fabricated, and tested. This test apparatus included a zero spring rate mechanism (ZSRM) designed to support a range of weights from 50 to 300 lbs and provide vertical suspension mode frequencies less than 0.1 Hz. The lateral suspension consisted of a pendulum suspended from a moving cart (linear bearing) which served to increase the effective length of the pendulum. The torsion suspension concept involved dual pendulum cables attached from above to a pivoting support (bicycle wheel). A simple test structure having variable weight and stiffness characteristics was used to simulate the vibration characteristics of a large space structure. The suspension hardware for the individual degrees of freedom was analyzed and tested separately and then combined to achieve a 3 degree of freedom suspension system. Results from the exploratory studies should provide useful guidelines for the development of future suspension systems for ground vibration testing of large space structures
Dynamics of mechanical feedback-type hydraulic servomotors under inertia loads
An analysis of the dynamics of mechanical feedback-type hydraulic servomotors under inertia loads is developed and experimental verification is presented. The analysis, which is developed in terms of two physical parameters, yields direct expressions for the following dynamic responses: (1) the transient response to a step input and the maximum cylinder pressure during the transient and (2) the variation of amplitude attenuation and phase shift with the frequency of a sinusoidally varying input. The validity of the analysis is demonstrated by means of recorded transient and frequency responses obtained on two servomotors. The calculated responses are in close agreement with the measured responses. The relations presented are readily applicable to the design as well as to the analysis of hydraulic servomotors
Evolution of single-ion crystal field and Kondo features in CeLaNiCuGe
Starting with the heavy fermion compound CeNiGe, the substitution of
nickel by copper leads to a dominance of the RKKY interaction in competition
with the Kondo and crystal field interaction. Consequently, this results in an
antiferromagnetic phase transition in CeNiCuGe for ,
which is, however, not fully completed up to a Cu-concentration of . To
study the influence of single-ion effects on the AFM ordering by shielding the
-moments, we analyzed the spin diluted substitution series
LaCeNiCuGe by magnetic susceptibility
and specific heat measurements. For small Cu-amounts the data
reveal single-ion scaling with regard to the Ce-concentration, while for larger
Cu-concentrations the AFM transition (encountered in the
CeNiCuGe series) is found to be completely depressed.
Calculation of the entropy reveal that the Kondo-effect still shields the
4-moments of the Ce-ions in CeNiCuGe.Comment: 4 pages, 3 figures, conference SCES0
Evolution of Quantum Criticality in CeNi_{9-x}Cu_xGe_4
Crystal structure, specific heat, thermal expansion, magnetic susceptibility
and electrical resistivity studies of the heavy fermion system
CeNi_{9-x}Cu_xGe_4 (0 <= x <= 1) reveal a continuous tuning of the ground state
by Ni/Cu substitution from an effectively fourfold degenerate non-magnetic
Kondo ground state of CeNi_9Ge_4 (with pronounced non-Fermi-liquid features)
towards a magnetically ordered, effectively twofold degenerate ground state in
CeNi_8CuGe_4 with T_N = 175 +- 5 mK. Quantum critical behavior, C/T ~ \chi ~
-ln(T), is observed for x about 0.4. Hitherto, CeNi_{9-x}Cu_xGe_4 represents
the first system where a substitution-driven quantum phase transition is
connected not only with changes of the relative strength of Kondo effect and
RKKY interaction, but also with a reduction of the effective crystal field
ground state degeneracy.Comment: 15 pages, 9 figure
Association of Air Pollution with Increased Incidence of Ventricular Tachyarrhythmias Recorded by Implanted Cardioverter Defibrillators
Epidemiologic studies have demonstrated a consistent link between sudden cardiac deaths and particulate air pollution. We used implanted cardioverter defibrillator (ICD) records of ventricular tachyarrhythmias to assess the role of air pollution as a trigger of these potentially life-threatening events. The study cohort consisted of 203 cardiac patients with ICD devices in the Boston metropolitan area who were followed for an average of 3.1 years between 1995 and 2002. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured on almost all days, and black carbon, sulfate, and particle number on a subset of days. Date, time, and intracardiac electrograms of ICD-detected arrhythmias were downloaded at the patients’ regular follow-up visits (about every 3 months). Ventricular tachyarrhythmias were identified by electrophysiologist review. Risk of ventricular arrhythmias associated with air pollution was estimated with logistic regression, adjusting for season, temperature, relative humidity, day of the week, patient, and a recent prior arrhythmia. We found increased risks of ventricular arrhythmias associated with 2-day mean exposure for all air pollutants considered, although these associations were not statistically significant. We found statistically significant associations between air pollution and ventricular arrhythmias for episodes within 3 days of a previous arrhythmia. The associations of ventricular tachyarrhythmias with fine particle mass, carbon monoxide, nitrogen dioxide, and black carbon suggest a link with motor vehicle pollutants. The associations with sulfate suggest a link with stationary fossil fuel combustion sources
A quantum solution to the arrow-of-time dilemma
The arrow of time dilemma: the laws of physics are invariant for time
inversion, whereas the familiar phenomena we see everyday are not (i.e. entropy
increases). I show that, within a quantum mechanical framework, all phenomena
which leave a trail of information behind (and hence can be studied by physics)
are those where entropy necessarily increases or remains constant. All
phenomena where the entropy decreases must not leave any information of their
having happened. This situation is completely indistinguishable from their not
having happened at all. In the light of this observation, the second law of
thermodynamics is reduced to a mere tautology: physics cannot study those
processes where entropy has decreased, even if they were commonplace.Comment: Contains slightly more material than the published version (the
additional material is clearly labeled in the latex source). Because of PRL's
title policy, the leading "A" was left out of the title in the published
pape
- …