20 research outputs found

    User-centred design of a task-oriented upper-limb assessment system for stroke

    Get PDF
    During rehabilitation from Stroke, patients require assessment of their upper-limb motor control. Outcome measures can often be subjective and objective data is required to supplement therapist/patient opinion on progress. This can be performed through goniometry; however, goniometry can be time-consuming, have inaccuracies of ±23º, and is therefore, often not used. Motion tracking technology is a possible answer to this problem, but can also be costly, time-consuming and not suitable for the clinical environment. This thesis aims to provide an objective, digital intervention method for assessing range of motion to supplement current outcome measures which is suitable for the clinical environment. This was performed by creating a low-cost technology through a user-centred design approach. Requirements elicitation demonstrated that a motivational, portable, cost-effective, non-invasive, time saving system for assessing functional activities was needed. Therefore, a system which utilised a Microsoft Kinect and EZ430 chronos wrist watch to track patient’s movements during and/or outside of therapy sessions was created. Measurements can be taken in a matter of minutes and provide a high quantity of objective data regarding patient movement. The system was verified, using healthy volunteers, by showing similar error rates in the system across 3 weeks in 10 able-bodied individuals, with error rates produced by a physiotherapist using goniometry. The system was also validated in the clinical setting with 6 stroke patients, over 15 weeks, as selected by 6 occupational therapists and 3 physiotherapists in 2 NHS stroke wards. The approach which has been created in this thesis is objective, repeatable, low-cost, portable, and non-invasive; allowing it to be the first tool for the objective assessment of upper-limb ROM which is efficiently designed and suitable for everyday use in stroke rehabilitation

    GBM Volumetry using the 3D Slicer Medical Image Computing Platform

    Get PDF
    Volumetric change in glioblastoma multiforme (GBM) over time is a critical factor in treatment decisions. Typically, the tumor volume is computed on a slice-by-slice basis using MRI scans obtained at regular intervals. (3D)Slicer – a free platform for biomedical research – provides an alternative to this manual slice-by-slice segmentation process, which is significantly faster and requires less user interaction. In this study, 4 physicians segmented GBMs in 10 patients, once using the competitive region-growing based GrowCut segmentation module of Slicer, and once purely by drawing boundaries completely manually on a slice-by-slice basis. Furthermore, we provide a variability analysis for three physicians for 12 GBMs. The time required for GrowCut segmentation was on an average 61% of the time required for a pure manual segmentation. A comparison of Slicer-based segmentation with manual slice-by-slice segmentation resulted in a Dice Similarity Coefficient of 88.43 ± 5.23% and a Hausdorff Distance of 2.32 ± 5.23 mm

    How inclusive, user-centered design research can improve psychological therapies for psychosis: Development of SlowMo

    Get PDF
    Real-world implementation of psychological interventions for psychosis is poor. Barriers include therapy being insufficiently usable and useful for a diverse range of people. User-centered, inclusive design approaches could improve the usability of therapy, which may increase uptake, adherence, and effectiveness. This study aimed to optimize the usability of an existing psychological intervention, Thinking Well, which targets reasoning processes in paranoia using a basic digital interface. We conducted inclusive, user-centered design research characterized by purposive sampling of extreme users from the margins of groups, ethnographic investigation of the problem context, and iterative prototyping of solutions. The UK Design Council's double diamond method was used. This consisted of 4 phases: discover, including a case series of Thinking Well, stakeholder interviews, desk research, user profiling, system mapping, and a mood board; define, consisting of workshops to synthesize findings and generate the design brief; develop, involving concept workshops and prototype testing; and deliver, in which the final minimal viable product was storyboarded and iteratively coded. Consistent with our previous work, the Thinking Well case series showed medium to large effects on paranoia and well-being and small effects on reasoning. These were maintained at follow-up despite some participants reporting difficulties with the therapy interface. Insights from the discover phase confirmed that usability was challenged by information complexity and poor accessibility. Participants were generally positive about the potential of technology to be enjoyable, help manage paranoia, and provide tailored interpersonal support from therapists and peers, although they reported privacy and security concerns. The define phase highlighted that the therapy redesign should support monitoring, simplify information processing, enhance enjoyment and trust, promote personalization and normalization, and offer flexible interpersonal support. During the develop phase over 60 concepts were created, with 2 key concepts of thoughts visualized as bubbles and therapy as a journey selected for storyboarding. The output of the deliver phase was a minimal viable product of an innovative digital therapy, SlowMo. SlowMo works by helping people to notice their worries and fast thinking habits, and encourages them to slow down for a moment to find ways of feeling safer. A Web app supports the delivery of 8 face-to-face sessions, which are synchronized to a native mobile app. SlowMo makes use of personalization, ambient information, and visual metaphors to tailor the appeal, engagement, and memorability of therapy to a diversity of needs. Feasibility testing has been promising, and the efficacy of SlowMo therapy is now being tested in a multicentered randomized controlled trial. The study demonstrates that developments in psychological theory and techniques can be enhanced by improving the usability of the therapy interface to optimize its impact in daily life. [Abstract copyright: ©Amy Hardy, Anna Wojdecka, Jonathan West, Ed Matthews, Christopher Golby, Thomas Ward, Natalie D Lopez, Daniel Freeman, Helen Waller, Elizabeth Kuipers, Paul Bebbington, David Fowler, Richard Emsley, Graham Dunn, Philippa Garety. Originally published in JMIR Mental Health (http://mental.jmir.org), 05.12.2018.

    A low cost 'activities of daily living' assessment system for the continual assessment of post-stroke patients, from inpatient/outpatient rehabilitation through to telerehabilitation

    Get PDF
    Research regarding telerehabilitation for stroke patients’ places little emphasis on monitoring and assessment. To effectively monitor a patient, assessment must be continuous; from the inpatient/outpatient setting, to the remote. However, assessment methods used by Occupational Therapists’ can be qualitative and difficult to automate for a remote location. The aim of this research is to develop a system which presents the Occupational Therapist with a tool that, whilst not altering current routine, provides Range of Motion (ROM) analysis from current and previous rehabilitation sessions. Amalgamated data can then be achieved through the use of the same prototype in a remote location. Results from the prototype are outputted in graphical format, detailing movement throughout the session. The system details minimum and maximum extremities of patient ROM throughout all sessions and can be compared with the ROM required to perform certain activities of daily living. This prototype system allows the therapist to continue traditional rehabilitation, whilst providing graphical feedback over time, including detailed ADL assessment. If then used by the patient in a remote location, movements can be analysed and reported to the therapist. The prototype provides visual feedback, helping to increase motivation, whilst providing data that can generate adaptable rehabilitation programs

    Self-concept organisation and mental toughness in sport

    No full text
    The present study examines the relationship between individual differences in evaluative self-organisation and mental toughness in sport, proposing that motivation and emotional resiliency (facets of mental toughness) stem from differences in core self. A cross-sectional assessment of 105 athletes competing at a range of performance levels took part in an online study including measures of self-reported mental toughness (Sport Mental Toughness Questionnaire; Sheard, M., Golby, J., & van Wersch, A. (2009). Progress towards construct validation of the Sports Mental Toughness Questionnaire (SMTQ). European Journal of Psychological Assessment, 25(3), 186–193. doi:10.1027/1015-5759.25.3.186) and self-organisation (self-descriptive attribute task; Showers, C. J. (2002). Integration and compartmentalisation: A model of self-structure and self-change. In D. Cervone & W. Mischel (Eds.), Advances in personality science (pp. 271–291). New York, NY: Guilford Press). As predicted, global mental toughness was associated with self-concept positivity, which was particularly high in individuals with positive-integrative self-organisation (individuals who distribute positive and negative self-attributes evenly across multiple selves). Specifically, positive integration was associated with constancy (commitment to goal achievement despite obstacles and the potential for failure), which extends presumably from positive integratives’ emotional stability and drive to resolve negative self-beliefs

    Fit 4 surgery, a bespoke app with biofeedback delivers rehabilitation at home before and after elective lung resection.

    Get PDF
    BACKGROUND Pulmonary rehabilitation programme for lung surgery patients can reduce the risk of post-operative complications but compliance to programmes can be limited by access to health care. We developed a home-based rehabilitation app and tested its feasibility in patients undergoing lung resection surgery. METHODS A cohort study was conducted over 18 months at a regional thoracic unit. The Fit 4 Surgery app included ten exercises. Patients were instructed to exercise for at least three minutes for each exercise. Data was transmitted back to the researchers remotely. Data was also collected from a contemporaneous group of surgery patients who attended local outpatient-based Chronic Obstructive Pulmonary Disease rehabilitation classes. Quality of Life and outcomes data in the app group were collected. Patients were also interviewed about their experience of the app. RESULTS App patients had a shorter wait before surgery compared to patients attending rehabilitation classes (24 vs 45 days) but managed four times as many sessions (2 vs 9), improving incremental shuttle walk test distance by 99 ± 83 (p < 0.05) metres before surgery. Five themes were gathered from the interviews. CONCLUSION An app based programme of rehabilitation can be delivered in a timely fashion to lung surgery patients with demonstrable physiological benefits; this will need to be confirmed in further clinical trials. CLINICAL TRIAL REGISTRATION NUMBER ISRCTN00061628. Registered 27 May 2011

    Chest wall motion analysis in healthy volunteers and adults with cystic fibrosis using a novel Kinect-based motion tracking system.

    Get PDF
    Respiratory disease is the leading cause of death in the UK. Methods for assessing pulmonary function and chest wall movement are essential for accurate diagnosis, as well as monitoring response to treatment, operative procedures and rehabilitation. Despite this, there is a lack of low-cost devices for rapid assessment. Spirometry is used to measure air flow expired, but cannot infer or directly measure full chest wall motion. This paper presents the development of a low-cost chest wall motion assessment system. The prototype was developed using four Microsoft Kinect sensors to create a 3D time-varying representation of a patient's torso. An evaluation of the system in two phases is also presented. Initially, static volume of a resuscitation mannequin with that of a Nikon laser scanner is performed. This showed the system has slight underprediction of 0.441 %. Next, a dynamic analysis through the comparison of results from the prototype and a spirometer in nine cystic fibrosis patients and thirteen healthy subjects was performed. This showed an agreement with correlation coefficients above 0.8656 in all participants. The system shows promise as a method for assessing respiratory disease in a cost-effective and timely manner. Further work must now be performed to develop the prototype and provide further evaluations
    corecore