6 research outputs found

    Shaping 90 wt% NanoMOFs into Robust Multifunctional Aerogels Using Tailored Bio-Based Nanofibrils

    Get PDF
    Metal-organic frameworks (MOFs) are hybrid porous crystalline networks with tunable chemical and structural properties. However, their excellent potential is limited in practical applications by their hard-to-shape powder form, making it challenging to assemble MOFs into macroscopic composites with mechanical integrity. While a binder matrix enables hybrid materials, such materials have a limited MOF content and thus limited functionality. To overcome this challenge, nanoMOFs are combined with tailored same-charge high-aspect-ratio cellulose nanofibrils (CNFs) to manufacture robust, wet-stable, and multi-functional MOF-based aerogels with 90 wt% nanoMOF loading. The porous aerogel architectures show excellent potential for practical applications such as efficient water purification, CO2 and CH4 gas adsorption and separation, and fire-safe insulation. Moreover, a one-step carbonization process enables these aerogels as effective structural energy-storage electrodes. This work exhibits the unique ability of high-aspect-ratio CNFs to bind large amounts of nanoMOFs in structured materials with outstanding mechanical integrity-a quality that is preserved even after carbonization. The demonstrated process is simple and fully discloses the intrinsic potential of the nanoMOFs, resulting in synergetic properties not found in the components alone, thus paving the way for MOFs in macroscopic multifunctional composites

    Gemcitabine Integrated Nano-Prodrug Carrier System

    No full text
    Peptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc–AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner

    Hierarchical build-up of bio-based nanofibrous materials with tunable metal–organic framework biofunctionality

    No full text
    Multifunctional, light-weight, responsive materials show promise in a range of applications including soft robotics, therapeutic delivery, advanced diagnostics and charge storage. This paper presents a novel, scalable, efficient and sustainable approach for the preparation of cellulose nanofibril-based aerogels via a facile ice-templating, solvent exchange and air-drying procedure, which could replace existing inefficient drying processes. These ambient-dried aerogels (∼99% porosity) exhibit a high specific compressive modulus (26.8 ± 6.1 kPa m3 kg−1, approaching equivalence of carbon-nanotube-reinforced aerogels), wet stability and shape recovery (80–90%), favorable specific surface area (90 m2 g−1) and tunable densities (2–20 kg m−3). The aerogels provide an ideal nanofibrillar substrate for in-situ growth of metal–organic frameworks (MOFs), via co-assembly of MOF precursors with proteins in aqueous solutions. The resulting hybrid aerogels show a nine-fold increase in surface area (810 m2g−1), with preserved wet stability and additional protein biofunctionality. The hybrid aerogels facilitate a pH-controlled release of immobilized proteins, following a concomitant disassembly of the surface grown MOFs, demonstrating their use in controlled delivery systems. The colorimetric protein binding assay of the biofunctionalized hybrid aerogel also demonstrates the potential of the material as a novel 3D bioassay platform, which could potentially be an alternative to plate-based enzyme-linked immunosorbent assay
    corecore