118 research outputs found

    User-specific Skin Temperature-aware DVFS for Smartphones

    Get PDF
    Conference on Design Automation Test in Europe (DATE) (2015 : Grenoble, FRANCE)Skin temperature of mobile devices intimately affects the user experience. Power management schemes built into smartphones can lead to quickly crossing a user's threshold of tolerable skin temperature. Furthermore, there is a significant variation among users in terms of their sensitivity. Hence, controlling the skin temperature as part of the device's power management scheme is paramount. To achieve this, we first present a method for estimating skin and screen temperature at run-time using a combination of available on-device thermal sensors and performance indicators. In an Android-based smartphone, we achieve 99.05% and 99.14% accuracy in estimations of back cover and screen temperatures, respectively. Leveraging this run-time predictor, we develop User-specific Skin Temperature-Aware (USTA) DVFS mechanism to control the skin temperature. Performance of USTA is tested both with benchmarks and user tests comparing USTA to the standard Android governor. The results show that more users prefer to use USTA as opposed to the default DVFS mechanism

    An fpga implementation of decision tree classification

    Get PDF
    Data mining techniques are a rapidly emerging class of applications that have widespread use in several fields. One important problem in data mining is Classification, which is the task of assigning objects to one of several predefined categories. Among the several solutions developed, Decision Tree Classification (DTC) is a popular method that yields high accuracy while handling large datasets. However, DTC is a computationally intensive algorithm, and as data sizes increase, its running time can stretch to several hours. In this paper, we propose a hardware implementation of Decision Tree Classification. We identify the computeintensive kernel (Gini Score computation) in the algorithm, and develop a highly efficient architecture, which is further optimized by reordering the computations and by using a bitmapped data structure. Our implementation on a Xilinx Virtex-II Pro FPGA platform (with 16 Gini units) provides up to 5.58 × performance improvement over an equivalent software implementation.

    JETTY: Filtering snoops for reduced energy consumption in SMP servers

    Get PDF
    We propose methods for reducing the energy consumed by snoop requests in snoopy bus-based symmetric multiprocessor (SMP) systems. Observing that a large fraction of snoops do not find copies in many of the other caches, we introduce JETTY, a small, cache-like structure. A JETTY is introduced in- between the bus and the L2 backside of each processor. There it filters the vast majority of snoops that would not find a locally cached copy. Energy is reduced as accesses to the much more energy demanding L2 tag arrays are decreased. No changes in the existing coherence protocol are required and no performance loss is experienced. We evaluate our method on a 4-way SMP server using a set of shared-memory applications. We demonstrate that a very small JETTY filters 74% (average) of all snoop-induced tag accesses that would miss. This results in an average energy reduction of 29% (range: 12% to 40%) measured as a fraction of the energy required by all L2 accesses (both tag and data arrays)

    Characterizing and modeling user activity on smartphones

    Full text link

    A Parallel Monte Carlo Code for Simulating Collisional N-body Systems

    Full text link
    We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N~10^7 particles. Our code is based on the the Henon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures, and the introduction of a parallel random number generation scheme, as well as a parallel sorting algorithm, required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. The implementation uses the Message Passing Interface (MPI) library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functions up to core collapse with the number of stars, N, spanning three orders of magnitude, from 10^5 to 10^7. We find that our results are in good agreement with self-similar core-collapse solutions, and the core collapse times generally agree with expectations from the literature. Also, we observe good total energy conservation, within less than 0.04% throughout all simulations. We analyze the performance of the code, and demonstrate near-linear scaling of the runtime with the number of processors up to 64 processors for N=10^5, 128 for N=10^6 and 256 for N=10^7. The runtime reaches a saturation with the addition of more processors beyond these limits which is a characteristic of the parallel sorting algorithm. The resulting maximum speedups we achieve are approximately 60x, 100x, and 220x, respectively.Comment: 53 pages, 13 figures, accepted for publication in ApJ Supplement

    HAPPE: Human and Application-Driven Frequency Scaling for Processor Power Efficiency

    Get PDF
    Abstract-Conventional dynamic voltage and frequency scaling techniques use high CPU utilization as a predictor for user dissatisfaction, to which they react by increasing CPU frequency. In this paper, we demonstrate that for many interactive applications, perceived performance is highly dependent upon the particular user and application, and is not linearly related to CPU utilization. This observation reveals an opportunity for reducing power consumption. We propose Human and Application driven frequency scaling for Processor Power Efficiency (HAPPE), an adaptive user-and-application-aware dynamic CPU frequency scaling technique. HAPPE continuously adapts processor frequency and voltage to the learned performance requirement of the current user and application. Adaptation to user requirements is quick and requires minimal effort from the user (typically a handful of key strokes). Once the system has adapted to the user's performance requirements, the user is not required to provide continued feedback but is permitted to provide additional feedback to adjust the control policy to changes in preferences. HAPPE was implemented on a Linux-based laptop and evaluated in 22 hours of controlled user studies. Compared to the default Linux CPU frequency controller, HAPPE reduces the measured system-wide power consumption of CPU-intensive interactive applications by 25 percent on average while maintaining user satisfaction. Index Terms-Power, CPU frequency scaling, user-driven study, mobile systems Ç 1I NTRODUCTION P OWER efficiency has been a major technology driver for battery-powered mobile systems, such as mobile phones, personal digital assistants, MP3 players, and laptops. Power efficiency has also become a new focus for line-powered desktop systems and data centers because of its impact on power dissipation and chip temperature, which affect performance, reliability, and lifetime. Processor power consumption is often a substantial portion of system power consumption in mobile systems Traditional CPU power management approaches can lose sight of an important fact: The ultimate goal of any computer system is to satisfy its users, not to execute a particular number of instructions per second. Although CPU utilization is a good indication of processor performance, the actual perceivable system performance depends on individual users and applications, and user satisfaction is not linearly related to CPU utilization. We conducted a study on 10 users with four interactive applications and found that for some applications, some users are satisfied with system performance when the processor is at the lowest frequency, while other users may not be satisfied even when it operates at the highest frequency. We also found that users may be insensitive to varying processor frequency for one application, but may be very sensitive to such changes for another application. Traditional DVFS policies that consider only CPU utilization or other useroblivious performance metrics are often too pessimistic about user performance requirements, and use a high frequency to satisfy all users, resulting in wasted power. Similar findings were also reported in other studies In this paper, we propose Human and Application driven frequency scaling for Processor Power Efficiency (HAPPE), a CPU DVFS technique that adapts voltage and frequency to the performance requirement of the curren

    Archer: A Community Distributed Computing Infrastructure for Computer Architecture Research and Education

    Full text link
    This paper introduces Archer, a community-based computing resource for computer architecture research and education. The Archer infrastructure integrates virtualization and batch scheduling middleware to deliver high-throughput computing resources aggregated from resources distributed across wide-area networks and owned by different participating entities in a seamless manner. The paper discusses the motivations leading to the design of Archer, describes its core middleware components, and presents an analysis of the functionality and performance of a prototype wide-area deployment running a representative computer architecture simulation workload.Comment: 11 pages, 2 figures. Describes the Archer project, http://archer-project.or
    • …
    corecore