3 research outputs found

    Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health

    Get PDF
    The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios.This research was funded by the Spanish Ministry of Economic Transformation, Industry, Knowledge and Universities; by the European Regional Development Fund (FEDER) within the framework of the FEDER program of Andalusia (Spain) 2014–2020 (grant number: UHU–202065); and by grant P20-00930 from the Andalusian Plan for Research, Development and Innovation, within the frame of the operational program “FEDER Andalucía 2014–2020”. The work of S.S. was supported by project number FCH-S-23-8330 of the Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic

    Effect of Selenate on Viability and Selenomethionine Accumulation of Chlorella sorokiniana

    Get PDF
    The aim of this work was to study the effect of Se(+VI) on viability, cell morphology, and selenomethionine accumulation of the green alga Chlorella sorokiniana grown in batch cultures. Culture exposed to sublethal Se concentrations of 40 mg·L−1 (212 ΌM) decreased growth rates for about 25% compared to control. A selenate EC50 value of 45 mg·L−1 (238.2 ΌM) was determined. Results showed that chlorophyll and carotenoids contents were not affected by Se exposure, while oxygen evolution decreased by half. Ultrastructural studies revealed granular stroma, fingerprint-like appearance of thylakoids which did not compromise cell activity. Unlike control cultures, SDS PAGE electrophoresis of crude extracts from selenate-exposed cell cultures revealed appearance of a protein band identified as 53 kDa Rubisco large subunit of Chlorella sorokiniana, suggesting that selenate affects expression of the corresponding chloroplast gene as this subunit is encoded in the chloroplast DNA. Results revealed that the microalga was able to accumulate up to 140 mg·kg−1 of SeMet in 120 h of cultivation. This paper shows that Chlorella sorokiniana biomass can be enriched in the high value aminoacid SeMet in batch cultures, while keeping photochemical viability and carbon dioxide fixation activity intact, if exposed to suitable sublethal concentrations of Se
    corecore