48 research outputs found

    Sustainability of Domestic Sewage Sludge Disposal

    Get PDF
    Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the "Working Document on Sludge (3rd draft, 2000)". The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application

    Phototreatment of Water by Organic Photosensitizers and Comparison with Inorganic Semiconductors

    Get PDF
    Phototreatment of water is drawing the attention of many as a promising alternative to replace methods like chlorination, ozonization, and other oxidation processes, used in current disinfection methods limiting harmful side-products and by-products that can cause damage to the fauna and flora. Porphyrins, phthalocyanines, and other related organic dyes are well known for their use in photodynamic therapy (PDT). These photosensitizers cause cell death by generating reactive oxygen species (ROS) especially singlet oxygen in the presence of light. Such molecules are also being explored for photodynamically treating microbial infections, killing of unwanted pathogens in the environment, and oxidation of chemical pollutants. The process of photosensitisation (phototreatment) can be applied for obtaining clean, microbe-free water, thus exploiting the versatile properties of photosensitizers. This review collects the various attempts carried out for phototreatment of water using organic photosensitizers. For comparison, some reports of semiconductors (especially TiO2) used in photocatalytic treatment of water are also mentioned

    Biomethane Potential of Sludges from a Brackish Water Fish Hatchery

    Get PDF
    The development of intensive aquaculture is facing the challenge of the sustainable management of effluents. The reproductive sectors (i.e., hatcheries) mainly use water recirculation systems (RAS), which discharge a portion of wastewater. Anaerobic digestion (AD) could reduce the environmental impact of this waste stream while producing biogas. The study is focused on the biochemical methane potential (BMP) of brackish fish hatchery sludges. Wastewater was concentrated by microfiltration and sedimentation and thickened sludges were treated in a BMP system with different inoculum/substrate (I/S) volatile solids ratios (from 50:1 to no inoculum). The highest I/S ratio showed the highest BMP (564.2 NmL CH4/g VS), while different I/S ratios showed a decreasing trend (319.4 and 127.7 NmL CH4/g VS, for I/S = 30 and I/S = 3). In absence of inoculum BMP resulted of 62.2 NmL CH4/g VS. The kinetic analysis (modified Gompertz model) showed a good correlation with the experimental data, but with a long lag-phase duration (from 14.0 to 5.5 days) in particular with the highest I/S. AD applied to brackish water sludges can be a promising treatment with interesting methane productions. For a continuous, full-scale application further investigation on biomass adaptation to salinity and on retention times is needed. Further experimental tests are ongoing

    How to choose the best tertiary treatment for pulp and paper wastewater? Life cycle assessment and economic analysis as guidance tools

    Get PDF
    Pulp and paper wastewater (P&P WW) often requires tertiary treatment to remove refractory compounds not eliminated by conventional biological treatment, ensuring compliance with high-quality effluent discharge or reuse standards. This study employs a life cycle assessment (LCA) methodology to compare alternative tertiary treatment technologies for P&P WW and rank them accordingly. The evaluated technologies in the scenarios include inorganic (S1) and organic (S2) coagulation-flocculation, ozonation (O3) (S3), O3+granular activated carbon (GAC) (S4), and ultrafiltration (UF)+reverse osmosis (RO) (S5). The analysis focuses on a P&P wastewater treatment plant (WWTP) in Northeastern Italy. The LCA is complemented by an economic analysis considering each technology's capital and operating costs, as well as potential revenues from internal effluent reuse. Results indicate that S4 (O3+GAC) outranks all the other scenarios in terms of both environmental performance and economic viability, primarily due to the advantages associated with effluent reuse. S5 (UF+RO), which also involves reuse, is limited by the high energy consumption of UF+RO, resulting in increased environmental impacts and costs. The physicochemical scenario S2 (Chem Or), currently utilized in the WWTP under study, remains the best-performing technology in the absence of effluent reuse. In contrast, S3 (O3 alone) exhibits the poorest environmental and economic outcomes due to substantial energy requirements for O3 generation and the inability to reuse the treated effluent directly. Lastly, a sensitivity analysis underscores the strong influence of chemical dosages in S1 and S2 on environmental and economic impacts, which is more significant than the impact of water reuse percentages in S4 and S5. The high electricity cost observed during 2022 negatively affects the energy-intensive scenarios (S3-S5), making coagulation-flocculation (S1-S2) even more convenient

    Monitoring of heavy metals, EOX and LAS in sewage sludge for agriculturale use: A case study

    Get PDF
    Subsequent to the increasing diffusion of wastewater treatment, particularly in high- and middle-income countries, the sewage sludge generated should be treated and valorised in an ecological and economic way, thus contributing to the circular economy. In this study, the monitoring of Heavy Metals (HM), Extractable Organic Halogens (EOX) and Linear Alkylbenzene Sulphonate (LAS) in sewage sludge from 10 different wastewater treatment plants located in Friuli Venezia Giulia (Italy) was reported, and their macronutrient content provided. The obtained results showed, for all tested samples, that HM content in sewage sludge was below the maximum permitted limits provided for by Italian and European regulations for agricultural reuse. Comparison with a similar monitoring campaign carried out in 2006 revealed how, while wastewater treatment plants efficiently resolved water pollution, they accumulated heavy metals and other persistent toxic compounds in sludge, thus restricting their potential reuse. Consequently, consistent and regular sludge monitoring should be undertaken to prevent soil and groundwater contamination. These outcomes could be of particular relevance for the future perspective of agricultural reuse of sewage sludge in waste management practices
    corecore