364 research outputs found
Recommended from our members
Preliminary site report for the 2005 ICDP-USGS deep corehole in the Chesapeake Bay impact crater
First report for the ICDP-USGS 1.7-km-deep corehole drilled into the central part of the Chesapeake Bay impact crater during 2005
A comparison of forward and backward pp pair knockout in 3He(e,e'pp)n
Measuring nucleon-nucleon Short Range Correlations (SRC) has been a goal of
the nuclear physics community for many years. They are an important part of the
nuclear wavefunction, accounting for almost all of the high-momentum strength.
They are closely related to the EMC effect. While their overall probability has
been measured, measuring their momentum distributions is more difficult. In
order to determine the best configuration for studying SRC momentum
distributions, we measured the He reaction, looking at events
with high momentum protons ( GeV/c) and a low momentum neutron
( GeV/c). We examined two angular configurations: either both protons
emitted forward or one proton emitted forward and one backward (with respect to
the momentum transfer, ). The measured relative momentum distribution
of the events with one forward and one backward proton was much closer to the
calculated initial-state relative momentum distribution, indicating that
this is the preferred configuration for measuring SRC.Comment: 8 pages, 9 figures, submitted to Phys Rev C. Version 2 incorporates
minor corrections in response to referee comment
Beam-target helicity asymmetry for ÎłânââÏâp in the N*resonance region
We report the first beam-target double-polarization asymmetries in the Îł ĂŸ nĂ°pĂ â Ïâ ĂŸ pĂ°pĂ reaction
spanning the nucleon resonance region from invariant mass W Œ 1500 to 2300 MeV. Circularly polarized
photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the
CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been
extracted using three very different analyses that show excellent agreement, and these have been used to
deduce the E polarization observable for an effective neutron target. These results have been incorporated
into new partial wave analyses and have led to significant revisions for several ÎłnN* resonance
photocouplings
Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. epâeÏ+n
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive
Ï
+
electroproduction reaction
Îł
â
p
â
n
Ï
+
. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is
1.1
<
W
<
3
GeV and
1
<
Q
2
<
6
GeV
2
. Results were obtained for about 6000 bins in
W
,
Â
Q
2
,
Â
cos
(
Ξ
â
)
, and
Ï
â
. Except at forward angles, very large target-spin asymmetries are observed over the entire
W
region. Reasonable agreement is found with phenomenological fits to previous data for
W
<
1.6
GeV, but very large differences are seen at higher values of
W
. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of
Q
2
, for resonances with masses as high as 2.4 GeV
Absorption of the and Mesons in Nuclei
Due to their long lifetimes, the and mesons are the ideal
candidates for the study of possible modifications of the in-medium
meson-nucleon interaction through their absorption inside the nucleus. During
the E01-112 experiment at the Thomas Jefferson National Accelerator Facility,
the mesons were photoproduced from H, C, Ti, Fe, and Pb targets. This
paper reports the first measurement of the ratio of nuclear transparencies for
the channel. The ratios indicate larger in-medium widths compared
with what have been reported in other reaction channels.Comment: 6 pages, 4 figure
Near-threshold Photoproduction of Phi Mesons from Deuterium
We report the first measurement of the differential cross section on
-meson photoproduction from deuterium near the production threshold for a
proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson
Lab. The measurement was carried out by a triple coincidence detection of a
proton, and near the theoretical production threshold of 1.57 GeV.
The extracted differential cross sections for the initial
photon energy from 1.65-1.75 GeV are consistent with predictions based on a
quasifree mechanism. This experiment establishes a baseline for a future
experimental search for an exotic -N bound state from heavier nuclear
targets utilizing subthreshold/near-threshold production of mesons
Towards a resolution of the proton form factor problem: new electron and positron scattering data
There is a significant discrepancy between the values of the proton electric
form factor, , extracted using unpolarized and polarized electron
scattering. Calculations predict that small two-photon exchange (TPE)
contributions can significantly affect the extraction of from the
unpolarized electron-proton cross sections. We determined the TPE contribution
by measuring the ratio of positron-proton to electron-proton elastic scattering
cross sections using a simultaneous, tertiary electron-positron beam incident
on a liquid hydrogen target and detecting the scattered particles in the
Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide
range in virtual photon polarization () and momentum transfer
() simultaneously, as well as to cancel luminosity-related systematic
errors. The cross section ratio increases with decreasing at . This measurement is consistent with the size of the form
factor discrepancy at GeV and with hadronic calculations
including nucleon and intermediate states, which have been shown to
resolve the discrepancy up to GeV.Comment: 6 pages, 4 figures, submitted to PR
- âŠ