364 research outputs found

    A comparison of forward and backward pp pair knockout in 3He(e,e'pp)n

    Full text link
    Measuring nucleon-nucleon Short Range Correlations (SRC) has been a goal of the nuclear physics community for many years. They are an important part of the nuclear wavefunction, accounting for almost all of the high-momentum strength. They are closely related to the EMC effect. While their overall probability has been measured, measuring their momentum distributions is more difficult. In order to determine the best configuration for studying SRC momentum distributions, we measured the 3^3He(e,eâ€Čpp)n(e,e'pp)n reaction, looking at events with high momentum protons (pp>0.35p_p > 0.35 GeV/c) and a low momentum neutron (pn<0.2p_n< 0.2 GeV/c). We examined two angular configurations: either both protons emitted forward or one proton emitted forward and one backward (with respect to the momentum transfer, q⃗\vec q). The measured relative momentum distribution of the events with one forward and one backward proton was much closer to the calculated initial-state pppp relative momentum distribution, indicating that this is the preferred configuration for measuring SRC.Comment: 8 pages, 9 figures, submitted to Phys Rev C. Version 2 incorporates minor corrections in response to referee comment

    Beam-target helicity asymmetry for γ→n→→π−p in the N*resonance region

    Get PDF
    We report the first beam-target double-polarization asymmetries in the Îł ĂŸ nĂ°pÞ → π− ĂŸ pĂ°pÞ reaction spanning the nucleon resonance region from invariant mass W ÂŒ 1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses and have led to significant revisions for several ÎłnN* resonance photocouplings

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π + electroproduction reaction Îł ∗ p → n π + . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 &lt; W &lt; 3 GeV and 1 &lt; Q 2 &lt; 6 GeV 2 . Results were obtained for about 6000 bins in W ,   Q 2 ,   cos ( Ξ ∗ ) , and ϕ ∗ . Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W &lt; 1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q 2 , for resonances with masses as high as 2.4 GeV

    Absorption of the ω\omega and ϕ\phi Mesons in Nuclei

    Full text link
    Due to their long lifetimes, the ω\omega and ϕ\phi mesons are the ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. During the E01-112 experiment at the Thomas Jefferson National Accelerator Facility, the mesons were photoproduced from 2^{2}H, C, Ti, Fe, and Pb targets. This paper reports the first measurement of the ratio of nuclear transparencies for the e+e−e^{+}e^{-} channel. The ratios indicate larger in-medium widths compared with what have been reported in other reaction channels.Comment: 6 pages, 4 figure

    Near-threshold Photoproduction of Phi Mesons from Deuterium

    Full text link
    We report the first measurement of the differential cross section on ϕ\phi-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, K+K^+ and K−K^- near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections dσdt\frac{d\sigma}{dt} for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. This experiment establishes a baseline for a future experimental search for an exotic ϕ\phi-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of ϕ\phi mesons

    Towards a resolution of the proton form factor problem: new electron and positron scattering data

    Full text link
    There is a significant discrepancy between the values of the proton electric form factor, GEpG_E^p, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEpG_E^p from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (Δ\varepsilon) and momentum transfer (Q2Q^2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing Δ\varepsilon at Q2=1.45 GeV2Q^2 = 1.45 \text{ GeV}^2. This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75Q^2\approx 1.75 GeV2^2 and with hadronic calculations including nucleon and Δ\Delta intermediate states, which have been shown to resolve the discrepancy up to 2−32-3 GeV2^2.Comment: 6 pages, 4 figures, submitted to PR
    • 

    corecore