5 research outputs found

    Multilocus sequence typing of Ochrobactrum spp. isolated from gastric niche

    Get PDF
    SummaryThe human stomach is colonized by diverse bacterial species. The presence of non-Helicobacter pylori bacteria in urease-positive biopsies of individuals has been reported. Bacteria belonging to the Ochrobactrum genus have been documented in the human gastric niche. The co-occurrence of Ochrobactrum spp. with H. pylori was previously reported in an antral biopsy of a non-ulcer dyspeptic (NUD) subject from Northern India. There is no information on the genetic diversity of Ochrobactrum spp. isolated from the gastric niche in the stomach. We aimed to study the species distribution and diversity of Ochrobactrum spp. with and without H. pylori in urease-positive biopsies across three different geographical regions in India. Sixty-two Ochrobactrum isolates recovered from patients with an upper gastric disorder (n=218) were subjected to molecular identification and multilocus sequence typing. H. pylori DNA was found in the majority of biopsies, which had a variable degree of Ochrobactrum spp present. Interestingly, some of the urease-positive biopsies only had Ochrobactrum without any H. pylori DNA. Based on phylogenetic analysis, the Ochrobactrum isolates were distributed into the O. intermedium, O. anthropi and O. oryzae groups. This indicates there are multiple species in the gastric niche irrespective of the presence or absence of H. pylori. Antibiotyping based on colistin and polymyxin B could differentiate between O. intermedium and O. anthropi without revealing the resistance-driven diversity. Considering the prevalence of multiple Ochrobactrum spp. in the human gastric niche, it is important to evaluate the commensal and/or pathogenic nature of non-H. pylori bacteria with respect to their geographical distribution, lifestyle and nutrition needs

    Intraoperative neuromonitoring in spine surgery: Does it reduce neural complications? Current evidence

    No full text
    Abstract The objectives were to review the evidence on whether intraoperative neurophysiological monitoring (IONM) sensitively and specifically detects intraoperative neurologic injury during spine surgery and whether it reduces neurological complications in spine surgery. A systematic literature review and meta-analysis were conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and studies spanning 1990–2022 were searched. The diagnostic accuracy of somatosensory evoked potentials (SSEPs) and motor-evoked potential (MEP) in predicting postoperative neurologic outcomes in spine surgery was assessed. We also analyzed clinical comparative studies that compared patients who underwent spine surgery with and without IONM to determine the rate of new neurologic events. Fifty studies that provided exact SSEP or MEP changes and postoperative neurological outcomes were analyzed. The features of SSEP changes included low sensitivity (67.7%), high specificity (94.1%), and strong negative predictive value (NPV) (92.1%). For the assessed alarm criteria of a 50% reduction, a 65% reduction, an 80% reduction in amplitude, and a total signal loss, the sensitivity and specificity values for MEP were 87.4%, 100%, 100%, and 100%, and 94.8%, 97%, 94.5%, and 90.5%, respectively. A random effects model was used to assess six research that compared neurological events with and without the use of IONM. The pooled Odds ratio was 0.5746 (confidence interval = 0.48; 0.67), z = 6.637, and the P value was 0.0001. The usefulness of IONM in detecting neurological events during spine surgery is well demonstrated by a growing body of research. However, prospective trials with high-level data are lacking to establish its efficacy in preventing new neurological deficits

    Peeping into genomic architecture by re-sequencing of Ochrobactrum intermedium M86 strain during laboratory adapted conditions

    Get PDF
    Advances in de novo sequencing technologies allow us to track deeper insights into microbial genomes for restructuring events during the course of their evolution inside and outside the host. Bacterial species belonging to Ochrobactrum genus are being reported as emerging, and opportunistic pathogens in this technology driven era probably due to insertion and deletion of genes. The Ochrobactrum intermedium M86 was isolated in 2005 from a case of non-ulcer dyspeptic human stomach followed by its first draft genome sequence in 2009. Here we report re-sequencing of O. intermedium M86 laboratory adapted strain in terms of gain and loss of genes. We also attempted for finer scale genome sequence with 10 times more genome coverage than earlier one followed by comparative evaluation on Ion PGM and Illumina MiSeq. Despite their similarities at genomic level, lab-adapted strain mainly lacked genes encoding for transposase protein, insertion elements family, phage tail-proteins that were not detected in original strain on both chromosomes. Interestingly, a 5 kb indel was detected in chromosome 2 that was absent in original strain mapped with phage integrase gene of Rhizobium spp. and may be acquired and integrated through horizontal gene transfer indicating the gene loss and gene gain phenomenon in this genus. Majority of indel fragments did not match with known genes indicating more bioinformatic dissection of this fragment. Additionally we report genes related to antibiotic resistance, heavy metal tolerance in earlier and re-sequenced strain. Though SNPs detected, there did not span urease and flagellar genes. We also conclude that third generation sequencing technologies might be useful for understanding genomic architecture and re-arrangement of genes in the genome due to their ability of larger coverage that can be used to trace evolutionary aspects in microbial system
    corecore