13 research outputs found
Recommended from our members
[DOE method for evaluating environmental and waste management samples: Revision 1, Addendum 1]
The US Dapartment of Energy`s (DOE`s) environmental and waste management (EM) sampling and analysis activities require that large numbers of samples be analyzed for materials characterization, environmental surveillance, and site-remediation programs. The present document, DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods), is a supplemental resource for analyzing many of these samples
Recommended from our members
The Surface-Mediated Unfolding Kinetics of Globular Proteins Is Dependent on Molecular Weight and Temperature
The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface-mediated unfolding can be described by experimental techniques, thereby allowing for the better elucidation of the relationships between the structure and function of soluble proteins as well as other macromolecules
Recommended from our members
Characterization strategy report for the organic safety issues
This report describes a logical approach to resolving potential safety issues resulting from the presence of organic components in hanford tank wastes. The approach uses a structured logic diagram (SLD) to provide a pathway for quantifying organic safety issue risk. The scope of the report is limited to selected organics (i.e., solvents and complexants) that were added to the tanks and their degradation products. The greatest concern is the potential exothermic reactions that can occur between these components and oxidants, such as sodium nitrate, that are present in the waste tanks. The organic safety issue is described in a conceptual model that depicts key modes of failure-event reaction processes in tank systems and phase domains (domains are regions of the tank that have similar contents) that are depicted with the SLD. Applying this approach to quantify risk requires knowing the composition and distribution of the organic and inorganic components to determine (1) how much energy the waste would release in the various domains, (2) the toxicity of the region associated with a disruptive event, and (3) the probability of an initiating reaction. Five different characterization options are described, each providing a different level of quality in calculating the risks involved with organic safety issues. Recommendations include processing existing data through the SLD to estimate risk, developing models needed to link more complex characterization information for the purpose of estimating risk, and examining correlations between the characterization approaches for optimizing information quality while minimizing cost in estimating risk
Chromatographic and traditional albumin isotherms on cellulose: A model for wound prpotein adsorption on modified cotton
Albumin is the most abundant protein found in healing wounds. Traditional and chromatographic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressings is adsorption and accumulation of proteins like albumin at the solid-liquid interface of the biological fluid and wound dressing fiber. To better understand the effect of fiber charge and molecular modifications in cellulose-containing fibers on the binding of serum albumin as observed in protease sequestrant dressings, albumin binding to modified cotton fibers was compared with traditional and chromatographic isotherms. Modified cotton including carboxymethylated, citrate-crosslinked, dialdehyde and phosphorylated cotton, which sequester elastase and collagenase, were compared for their albumin binding isotherms. Albumin isotherms on citrate-cellulose, cross-linked cotton demonstrated a two-fold increased binding affinity over untreated cotton. A comparison of albumin binding between traditional, solution isotherms and chromatographic isotherms on modified cellulose yielded similar equilibrium constants. Application of the binding affinity of albumin obtained in the in vitro protein isotherm to the in vivo wound dressing uptake of the protein is discussed. The chromatographic approach to assessment of albumin isotherms on modified cellulose offers a more rapid approach to evaluating protein binding on modified cellulose over traditional solution approaches
Cotton and protein interactions
The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds