7,543 research outputs found

    Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

    Get PDF
    Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge)

    Anticancer and anti-inflammatory effects of tomentosin: Cellular and molecular mechanisms

    Get PDF
    Tomentosin is a natural compound known for its presence in some medicinal plants of the Asteraceae family such as Inula viscosa. Recent studies have highlighted its anticancer and anti-inflammatory properties. Its anticancer mechanisms are unique and act at different levels ranging from cellular organization to molecular transcriptional factors and epigenetic modifications. Tomentosin’s possession of the modulatory effect on telomerase expression on tumor cell lines has captured the interest of researchers and spurred a more robust study on its anticancer effect. Since inflammation has a close link with cancer disease, this natural compound appears to be a potential cancer-fighting drug. Indeed, its recently demonstrated anti-inflammatory action can be considered as a starting point for its evaluation as an anticancer chemo-preventive agent

    Universal Behavior of Load Distribution in Scale-free Networks

    Full text link
    We study a problem of data packet transport in scale-free networks whose degree distribution follows a power-law with the exponent γ\gamma. We define load at each vertex as the accumulated total number of data packets passing through that vertex when every pair of vertices send and receive a data packet along the shortest path connecting the pair. It is found that the load distribution follows a power-law with the exponent δ2.2(1)\delta \approx 2.2(1), insensitive to different values of γ\gamma in the range, 2<γ32 < \gamma \le 3, and different mean degrees, which is valid for both undirected and directed cases. Thus, we conjecture that the load exponent is a universal quantity to characterize scale-free networks.Comment: 5 pages, 5 figures, revised versio

    Numerical consistency check between two approaches to radiative corrections for neutrino masses and mixings

    Full text link
    We briefly outline the two popular approaches on radiative corrections to neutrino masses and mixing angles, and then carry out a detailed numerical analysis for a consistency check between them in MSSM. We find that the two approaches are nearly consistent with a small discrepancy of a factor of 13 percent in mass eigenvalues at low energy scale, but the predictions on mixing angles are almost consistent. We check the stability of the three types of neutrino models, i.e., hierarchical, inverted hierarchical and degenerate models, under radiative corrections, using both approaches, and find consistent conclusions. The neutrino mass models which are found to be stable under radiative corrections in MSSM are the normal hierarchical model and the inverted hierarchical model with opposite CP parity. We also carry out numerical analysis on some important conjectures related to radiative corrections in MSSM, viz., radiative magnification of solar and atmospheric mixings in case of nearly degenerate model having same CP parity (MPR conjecture) and radiative generation of solar mass scale in exactly two-fold degenerate model with opposite CP parity and non-zero reactor angle (JM conjecture). We observe certain exceptions to these conjectures. Finally the effect of scale-dependent vacuum expectation value in neutrino mass renormalisation is discussed.Comment: 26 pages, 5 figures,references added, typos corrected and text modifie

    Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)

    Get PDF
    We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe

    Global organization of metabolic fluxes in the bacterium, Escherichia coli

    Full text link
    Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalyzed biochemical reactions, is the most investigated complex intercellular web of molecular interactions. While the topological organization of individual reactions into metabolic networks is increasingly well understood, the principles governing their global functional utilization under different growth conditions pose many open questions. We implement a flux balance analysis of the E. coli MG1655 metabolism, finding that the network utilization is highly uneven: while most metabolic reactions have small fluxes, the metabolism's activity is dominated by several reactions with very high fluxes. E. coli responds to changes in growth conditions by reorganizing the rates of selected fluxes predominantly within this high flux backbone. The identified behavior likely represents a universal feature of metabolic activity in all cells, with potential implications to metabolic engineering.Comment: 15 pages 4 figure

    TeV-scale seesaw from a multi-Higgs model

    Full text link
    We suggest new simple model of generating tiny neutrino masses through a TeV-scale seesaw mechanism without requiring tiny Yukawa couplings. This model is a simple extension of the standard model by introducing extra one Higgs singlet, and one Higgs doublet with a tiny vacuum expectation value. Experimental constraints, electroweak precision data and no large flavor changing neutral currents, are satisfied since the extra doublet only has a Yukawa interaction with lepton doublets and right-handed neutrinos, and their masses are heavy of order a TeV-scale. Since active light neutrinos are Majorana particles, this model predicts a neutrinoless double beta decay.Comment: 21 pages, 8 figure

    Authenticated storage using small trusted hardware

    Get PDF
    A major security concern with outsourcing data storage to third-party providers is authenticating the integrity and freshness of data. State-of-the-art software-based approaches require clients to maintain state and cannot immediately detect forking attacks, while approaches that introduce limited trusted hardware (e.g., a monotonic counter) at the storage server achieve low throughput. This paper proposes a new design for authenticating data storage using a small piece of high-performance trusted hardware attached to an untrusted server. The proposed design achieves significantly higher throughput than previous designs. The server-side trusted hardware allows clients to authenticate data integrity and freshness without keeping any mutable client-side state. Our design achieves high performance by parallelizing server-side authentication operations and permitting the untrusted server to maintain caches and schedule disk writes, while enforcing precise crash recovery and write access control

    Shortest paths and load scaling in scale-free trees

    Get PDF
    The average node-to-node distance of scale-free graphs depends logarithmically on N, the number of nodes, while the probability distribution function (pdf) of the distances may take various forms. Here we analyze these by considering mean-field arguments and by mapping the m=1 case of the Barabasi-Albert model into a tree with a depth-dependent branching ratio. This shows the origins of the average distance scaling and allows a demonstration of why the distribution approaches a Gaussian in the limit of N large. The load (betweenness), the number of shortest distance paths passing through any node, is discussed in the tree presentation.Comment: 8 pages, 8 figures; v2: load calculations extende
    corecore