16 research outputs found

    Adaptive Prototypical Networks

    Full text link
    Prototypical network for Few shot learning tries to learn an embedding function in the encoder that embeds images with similar features close to one another in the embedding space. However, in this process, the support set samples for a task are embedded independently of one other, and hence, the inter-class closeness is not taken into account. Thus, in the presence of similar-looking classes in a task, the embeddings will tend to be close to each other in the embedding space and even possibly overlap in some regions, which is not desirable for classification. In this paper, we propose an approach that intuitively pushes the embeddings of each of the classes away from the others in the meta-testing phase, thereby grouping them closely based on the distinct class labels rather than only the similarity of spatial features. This is achieved by training the encoder network for classification using the support set samples and labels of the new task. Extensive experiments conducted on benchmark data sets show improvements in meta-testing accuracy when compared with Prototypical Networks and also other standard few-shot learning models

    sj-docx-1-pie-10.1177_09544089221139102 - Supplemental material for Experimental and theoretical analyses of material removal in poppet valve magnetorheological finishing

    No full text
    Supplemental material, sj-docx-1-pie-10.1177_09544089221139102 for Experimental and theoretical analyses of material removal in poppet valve magnetorheological finishing by Manjesh Kumar, Chandan Kumar, Amit Kumar, Debashish Gogoi and Manas Das in Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</p

    sj-docx-2-pie-10.1177_09544089221139102 - Supplemental material for Experimental and theoretical analyses of material removal in poppet valve magnetorheological finishing

    No full text
    Supplemental material, sj-docx-2-pie-10.1177_09544089221139102 for Experimental and theoretical analyses of material removal in poppet valve magnetorheological finishing by Manjesh Kumar, Chandan Kumar, Amit Kumar, Debashish Gogoi and Manas Das in Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</p

    Phytoplankton biomass in relation to flow dynamics: the case of a tropical river Mahanadi, India

    No full text
    This present study was conducted to extend our understanding on the relationship between Chlorophyll a (Chl a) concentration and hydrological parameters typically flow velocity, environmental variables and trophic state conditions using lotic water as experimental system. River Mahanadi, India was selected as a model for the present study. Based on elevation from mean sea level, twelve sampling sites from Sambalpur to Naraj were grouped into three zones viz. upper zone (71 km), middle zone (142 km) and lower zone (103 km). Carlson Trophic State Index (CTSI) revealed eutrophic state in middle and lower zone and with mesotrophic condition in the upper zone. Along the river stretch, a negative correlation was observed between Chl a concentration and flow velocity at all three zones during post monsoon (r = − 0.15) and monsoon (r = − 0.31). Seasonal study revealed higher Chl a concentration (16.16–283.85 μg l−1) in post-monsoon with recorded mean flow velocity (0.28 ± 0.19 ms−1) as compared to monsoon season with lower Chl a (18.68–232.24 μg l−1) and mean flow velocity (0.54 ± 0.21 ms−1). Among environmental variables, water temperature and pH showed a positive correlation with Chl a. Overall, the findings of this study illustrated the occurrence of higher phytoplankton biomass (quantified as Chl a) during post-monsoon season coincides with low water velocity. The dataset of this work can be implicated for the hydrological and the ecological framework of the tropical river Mahanadi in the Indian Territory

    Table_1_Elucidating the impact of boron fertilization on soil physico-chemical and biological entities under cauliflower-cowpea-okra cropping system in an Eastern Himalayan acidic Inceptisol.docx

    No full text
    Information on the role of boron (B) on soil physico-chemical and biological entities is scarce, and the precise mechanism in soil is still obscure. Present field investigation aimed to assessing the implication of direct and residual effect of graded levels of applied-B on soil biological entities and its concomitant impact on crop productivity. The treatments comprised of five graded levels of B with four replications. To assess the direct effect of B-fertilization, cauliflower was grown as a test crop wherein, B-fertilization was done every year. For assessment of succeeding residual effects of B-fertilization, cowpea and okra were grown as test crops and, B-fertilization was phased out in both crops. The 100% recommended dose of NPK (RDF) along with FYM was uniformly applied to all crops under CCOCS. Results indicated that the direct effect of B had the edge over residual effect of B in affecting soil physico-chemical and biological entities under CCOCS. Amongst the graded levels of B, application of the highest B level (2 kg ha–1) was most prominent in augmenting microbiological pools in soil at different crop growth stages. The order of B treatments in respect of MBC, MBN, and soil respiration at different crop growth stages was 2.0 kg B ha–1 > 1.5 kg B ha–1 > 1.0 kg B ha–1 > 0.5 kg B ha–1 > 0 kg B ha–1, respectively. Moreover, maximum recoveries of potentially mineralizable-C (PMC) and potentially mineralizable-N (PMN) were noticed under 2 kg B ha–1. Analogous trend was recorded in soil microbial populations at different crop growth stages. Similarly, escalating B levels up to 2 kg B ha–1 exhibited significantly greater soil enzymatic activities viz., arylsulphatase (AS), dehydrogenase (DH), fluorescein diacetate (FDA) and phosphomonoesterase (PMA), except urease enzyme (UE) which showed an antagonistic effect of applied-B in soil. Greater geometric mean enzyme activity (GMEA) and soil functional diversity index were recorded under 2 kg B ha–1 in CCOCS, at all crop growth stages over control. The inclusive results indicated that different soil physico-chemical and biological properties CCOCS can be invariably improved by the application of graded levels of B up to 2 kg B ha–1 in an acid Inceptisol.</p

    Evaluation of 19,460 Wheat Accessions Conserved in the Indian National Genebank to Identify New Sources of Resistance to Rust and Spot Blotch Diseases

    No full text
    <div><p>A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat–<i>Triticum aestivum</i>, <i>T</i>. <i>durum</i> and <i>T</i>. <i>dicoccum</i> were screened sequentially at multiple disease hotspots, during the 2011–14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels.</p></div
    corecore