113 research outputs found

    La tutela dei lavoratori subordinati e dei livelli occupazionali nel trasferimento d'azienda di imprese in crisi o insolventi

    Get PDF
    The protection of employees and employment levels in the event of a business crisis or insolvency - Summary. The research, from a historical reconstruction of the internal discipline of the circulatory phenomenon of  performing firms and considering the European Union law and its jurisprudence, has focused on innovations that have affected domestic order with respect to the transfer of businesses in crisis or insolvent as a result of the conviction of our country by the European Court of Justice judgment no. 561/ 07 of 2009. In particular, the analysis focused on new art. 47, c . 4 bis, the l. n . 428/1990.  Significant attention has been paid to aspects related not only to the new arrangement and debt restructuring agreement, but also to the extraordinary administration procedure  in relation to  detecting the constant critical issues with respect to the EU Directive no. 2001/23. The study ultimately focused on collective protection, as part of the circulatory system, raised in favour of the employees of companies in crisis or ailing. This can take on strategic importance, with respect to the retention of employment levels

    Emergence of oscillations in a simple epidemic model with demographic data

    Get PDF
    A simple susceptible–infectious–removed epidemic model for smallpox, with birth and death rates based on historical data, produces oscillatory dynamics with remarkably accurate periodicity. Stochastic population data cause oscillations to be sustained rather than damped, and data analysis regarding the oscillations provides insights into the same set of population data. Notably, oscillations arise naturally from the model, instead of from a periodic forcing term or other exogenous mechanism that guarantees oscillation: the model has no such mechanism. These emergent natural oscillations display appropriate periodicity for smallpox, even when the model is applied to different locations and populations. The model and datasets, in turn, offer new observations about disease dynamics and solution trajectories. These results call for renewed attention to relatively simple models, in combination with datasets from real outbreaks

    Acylpeptide Hydrolase Inhibition as Targeted Strategy to Induce Proteasomal Down-Regulation

    Get PDF
    Acylpeptide hydrolase (APEH), one of the four members of the prolyl oligopeptidase class, catalyses the removal of N-acylated amino acids from acetylated peptides and it has been postulated to play a key role in protein degradation machinery. Disruption of protein turnover has been established as an effective strategy to down-regulate the ubiquitin-proteasome system (UPS) and as a promising approach in anticancer therapy

    Identification and Characterisation of a Novel Acylpeptide Hydrolase from Sulfolobus Solfataricus: Structural and Functional Insights

    Get PDF
    A novel acylpeptide hydrolase, named APEH-3Ss, was isolated from the hypertermophilic archaeon Sulfolobus solfataricus. APEH is a member of the prolyl oligopeptidase family which catalyzes the removal of acetylated amino acid residues from the N terminus of oligopeptides. The purified enzyme shows a homotrimeric structure, unique among the associate partners of the APEH cluster and, in contrast to the archaeal APEHs which show both exo/endo peptidase activities, it appears to be a “true” aminopeptidase as exemplified by its mammalian counterparts, with which it shares a similar substrate specificity. Furthermore, a comparative study on the regulation of apeh gene expression, revealed a significant but divergent alteration in the expression pattern of apeh-3Ss and apehSs (the gene encoding the previously identified APEHSs from S. solfataricus), which is induced in response to various stressful growth conditions. Hence, both APEH enzymes can be defined as stress-regulated proteins which play a complementary role in enabling the survival of S. solfataricus cells under different conditions. These results provide new structural and functional insights into S. solfataricus APEH, offering a possible explanation for the multiplicity of this enzyme in Archaea

    Antimicrobial activity, membrane interaction and structural features of short arginine-rich antimicrobial peptides

    Get PDF
    Antimicrobial activity of many AMPs can be improved by lysine-to-arginine substitution due to a more favourable interaction of arginine guanidinium moiety with bacterial membranes. In a previous work, the structural and functional characterization of an amphipathic antimicrobial peptide named RiLK1, including lysine and arginine as the positively charged amino acids in its sequence, was reported. Specifically, RiLK1 retained its β-sheet structure under a wide range of environmental conditions (temperature, pH, and ionic strength), and exhibited bactericidal activity against Gram-positive and Gram-negative bacteria and fungal pathogens with no evidence of toxicity on mammalian cells. To further elucidate the influence of a lysine-to-arginine replacement on RiLK1 conformational properties, antimicrobial activity and peptide-liposome interaction, a new RiLK1-derivative, named RiLK3, in which the lysine is replaced with an arginine residue, was projected and characterised in comparison with its parental compound. The results evidenced that lysine-to-arginine mutation not only did not assure an improvement in the antimicrobial potency of RiLK1 in terms of bactericidal, virucidal and fungicidal activities, but rather it was completely abolished against the hepatitis A virus. Therefore, RiLK1 exhibited a wide range of antimicrobial activity like other cationic peptides, although the exact mechanisms of action are not completely understood. Moreover, tryptophan fluorescence measurements confirmed that RiLK3 bound to negatively charged lipid vesicles with an affinity lower than that of RiLK1, although no substantial differences from the structural and self-assembled point of view were evidenced. Therefore, our findings imply that antimicrobial efficacy and selectivity are affected by several complex and interrelated factors related to substitution of lysine with arginine, such as their relative proportion and position. In this context, this study could provide a better rationalisation for the optimization of antimicrobial peptide sequences, paving the way for the development of novel AMPs with broad applications

    Recombinant Expression of Archaeal Superoxide Dismutases in Plant Cell Cultures: A Sustainable Solution with Potential Application in the Food Industry

    No full text
    Superoxide dismutase (SOD) is a fundamental antioxidant enzyme that neutralises superoxide ions, one of the main reactive oxygen species (ROS). Extremophile organisms possess enzymes that offer high stability and catalytic performances under a wide range of conditions, thus representing an exceptional source of biocatalysts useful for industrial processes. In this study, SODs from the thermo-halophilic Aeropyrum pernix (SODAp) and the thermo-acidophilic Saccharolobus solfataricus (SODSs) were heterologously expressed in transgenic tomato cell cultures. Cell extracts enriched with SODAp and SODSs showed a remarkable resistance to salt and low pHs, respectively, together with optimal activity at high temperatures. Moreover, the treatment of tuna fillets with SODAp-extracts induced an extension of the shelf-life of this product without resorting to the use of illicit substances. The results suggested that the recombinant plant extracts enriched with the extremozymes could find potential applications as dietary supplements in the nutrition sector or as additives in the food preservation area, representing a more natural and appealing alternative to chemical preservatives for the market

    Proteasome and Acylpeptide hydrolase system: exploring an alternative strategy in cancer therapy

    Get PDF
    Acylpeptide hydrolase (APEH), one of the four members of the prolyl oligopeptidase class, catalyses the removal of Nacylated amino acids from acetylated peptides and it has been postulated to play a key role in protein degradation machinery. Disruption of protein turnover has been established as an effective strategy to down-regulate the ubiquitinproteasome system (UPS) and as a promising approach in anticancer therapy. Here, we illustrate a new pathway modulating UPS and proteasome activity through inhibition of APEH. To find novel molecules able to down-regulate APEH activity, we screened a set of synthetic peptides, reproducing the reactive-site loop of a known archaeal inhibitor of APEH (SsCEI), and the conjugated linoleic acid (CLA) isomers. A 12-mer SsCEI peptide and the trans10-cis12 isomer of CLA, were identified as specific APEH inhibitors and their effects on cell-based assays were paralleled by a dose-dependent reduction of proteasome activity. Moreover, cell treatment with the individual compounds increased the cytoplasm levels of several classic hallmarks of proteasome inhibition, such as NFkappaB and misfolded or polyubiquitinylated proteins, without any cytotoxicity. Remarkably, transfection of human bronchial epithelial cells with APEH siRNA, promoted a marked accumulation of a mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), herein used as a model of misfolded protein typically degraded by UPS. Our study supports a previously unrecognized role of APEH as a negative effector of proteasome activity by an unknown mechanism and opens new perspectives for the development of strategies aimed at modulation of cancer progression

    Unusual Antioxidant Properties of 26S Proteasome Isolated from Cold-Adapted Organisms

    No full text
    The oxidative challenge represents an important factor affecting the adaptive strategies in Antarctic fish, but their impact on the protein degradation machinery still remains unclear. The previous analysis of the first 26S proteasome from the Antarctic red-blooded fish Trematomus bernacchii, evidenced improved antioxidant functions necessary to counteract the environmental pro-oxidant conditions. The purpose of this work was to carry out a study on 26S proteasomes from the temperate red-blooded Dicenthrarcus labrax and the icefish Chionodraco hamatus in comparison with the isoform already described from T. bernacchii, to better elucidate the cold-adapted physiological functions of this complex. Therefore, the 26S isoforms were isolated and the complementary DNAs (cDNAs) codifying the catalytic subunits were cloned. The biochemical characterization of Antarctic 26S proteasomes revealed their significantly higher structural stability and resistance to H2O2 with respect to that of the temperate counterpart, as also suggested by a comparative modeling analysis of the catalytic subunits. Moreover, in contrast to that observed in T. bernacchii, the 26S systems from C. hamatus and D. labrax were incapable to hydrolyze oxidized proteins in a ubiquitin-independent manner. Therefore, the ‘uncommon’ properties displayed by the Antarctic 26S proteasomes can mirror the impact exercised by evolutionary pressure in response to richly oxygenated environments
    corecore