11 research outputs found

    Etude des centrines et des protéines de type SFI1p dans le réseau infraciliaire de paramécie

    No full text
    ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Nd6p, a Novel Protein with RCC1-Like Domains Involved in Exocytosis in Paramecium tetraurelia

    No full text
    In Paramecium tetraurelia, the regulated secretory pathway of dense core granules called trichocysts can be altered by mutation and genetically studied. Seventeen nondischarge (ND) genes controlling exocytosis have already been identified by a genetic approach. The site of action of the studied mutations is one of the three compartments, the cytosol, trichocyst, or plasma membrane. The only ND genes cloned to date correspond to mutants affected in the cytosol or in the trichocyst compartment. In this work, we investigated a representative of the third compartment, the plasma membrane, by cloning the ND6 gene. This gene encodes a 1,925-amino-acid protein containing two domains homologous to the regulator of chromosome condensation 1 (RCC1). In parallel, 10 new alleles of the ND6 gene were isolated. Nine of the 12 available mutations mapped in the RCC1-like domains, showing their importance for the Nd6 protein (Nd6p) function. The RCC1 protein is well known for its guanine exchange factor activity towards the small GTPase Ran but also for its involvement in membrane fusion during nuclear envelope assembly. Other proteins with RCC1-like domains are also involved in intracellular membrane fusion, but none has been described yet as involved in exocytosis. The case of Nd6p is thus the first report of such a protein with a documented role in exocytosis

    Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules

    Get PDF
    Summary Cilia and flagella are organelles essential for motility and sensing of environmental stimuli. Depending on the cell type, cilia acquire a defined set of functions and, accordingly, are built with an appropriate length and molecular composition. Several ciliary proteins display a high degree of conservation throughout evolution and mutations in ciliary genes are associated with various diseases such as ciliopathies and infertility. Here, we describe the role of the highly conserved ciliary protein, Bug22, in Drosophila. Previous studies in unicellular organisms have shown that Bug22 is required for proper cilia function, but its exact role in ciliogenesis has not been investigated yet. Null Bug22 mutant flies display cilia-associated phenotypes and nervous system defects. Furthermore, sperm differentiation is blocked at the individualization stage, due to impaired migration of the individualization machinery. Tubulin post-translational modifications (PTMs) such as polyglycylation, polyglutamylation or acetylation, are determinants of microtubule (MT) functions and stability in centrioles, cilia and neurons. We found defects in the timely incorporation of polyglycylation in sperm axonemal MTs of Bug22 mutants. In addition, we found that depletion of human Bug22 in RPE1 cells resulted in the appearance of longer cilia and reduced axonemal polyglutamylation. Our work identifies Bug22 as a protein that plays a conserved role in the regulation of PTMs of the ciliary axoneme

    Chromosomes function as a barrier to mitotic spindle bipolarity in polyploid cells

    No full text
    International audiencePloidy variations such as genome doubling are frequent in human tumors and have been associated with genetic instability favoring tumor progression. How polyploid cells deal with increased centrosome numbers and DNA content remains unknown. Using Drosophila neuroblasts and human cancer cells to study mitotic spindle assembly in polyploid cells, we found that most polyploid cells divide in a multipolar manner. We show that even if an initial centrosome clustering step can occur at mitotic entry, the establishment of kinetochore-microtubule attachments leads to spatial chromosome configurations, whereby the final coalescence of supernumerary poles into a bipolar array is inhibited. Using in silico approaches and various spindle and DNA perturbations, we show that chromosomes act as a physical barrier blocking spindle pole coalescence and bipolarity. Importantly, microtubule stabilization suppressed multipolarity by improving both centrosome clustering and pole coalescence. This work identifies inhibitors of bipolar division in polyploid cells and provides a rationale to understand chromosome instability typical of polyploid cancer cells

    An Sfi1p-Like Centrin-Binding Protein Mediates Centrin-Based Ca2+-Dependent Contractility in Paramecium tetraurelia▿ †

    No full text
    The previous characterization and structural analyses of Sfi1p, a Saccharomyces cerevisiae centrin-binding protein essential for spindle pole body duplication, have suggested molecular models to account for centrin-mediated, Ca2+-dependent contractility processes (S. Li, A. M. Sandercock, P. Conduit, C. V. Robinson, R. L. Williams, and J. V. Kilmartin, J. Cell Biol. 173:867-877, 2006). Such processes can be analyzed by using Paramecium tetraurelia, which harbors a large Ca2+-dependent contractile cytoskeletal network, the infraciliary lattice (ICL). Previous biochemical and genetic studies have shown that the ICL is composed of diverse centrin isoforms and a high-molecular-mass centrin-associated protein, whose reduced size in the démaillé (dem1) mutant correlates with defective organization of the ICL. Using sequences derived from the high-molecular-mass protein to probe the Paramecium genome sequence, we characterized the PtCenBP1 gene, which encodes a 460-kDa protein. PtCenBP1p displays six almost perfect repeats of ca. 427 amino acids (aa) and harbors 89 potential centrin-binding sites with the consensus motif LLX11F/LX2WK/R, similar to the centrin-binding sites of ScSfi1p. The smaller (260-kDa) protein encoded by the dem1 mutant PtCenBP1 allele comprises only two repeats of 427 aa and 46 centrin-binding sites. By using RNA interference and green fluorescent protein fusion experiments, we showed that PtCenBP1p forms the backbone of the ICL and plays an essential role in its assembly and contractility. This study provides the first in vivo demonstration of the role of Sfi1p-like proteins in centrin-mediated Ca2+-dependent contractile processes

    MKS-NPHP module proteins control ciliary shedding at the transition zone

    No full text
    International audienceCiliary shedding occurs from unicellular organisms to metazoans. Although required during the cell cycle and during neurogenesis, the process remains poorly understood. In all cellular models, this phenomenon occurs distal to the transition zone (TZ), suggesting conserved molecular mechanisms. The TZ module proteins (Meckel Gruber syndrome [MKS]/Nephronophtysis [NPHP]/Centrosomal protein of 290 kDa [CEP290]/Retinitis pigmentosa GTPase regulator-Interacting Protein 1-Like Protein [RPGRIP1L]) are known to cooperate to establish TZ formation and function. To determine whether they control deciliation, we studied the function of 5 of them (Transmembrane protein 107 [TMEM107], Transmembrane protein 216 [TMEM216], CEP290, RPGRIP1L, and NPHP4) in Paramecium. All proteins are recruited to the TZ of growing cilia and localize with 9-fold symmetry at the level of the most distal part of the TZ. We demonstrate that depletion of the MKS2/TMEM216 and TMEM107 proteins induces constant deciliation of some cilia, while depletion of either NPHP4, CEP290, or RPGRIP1L prevents Ca2+/EtOH deciliation. Our results constitute the first evidence for a role of conserved TZ proteins in deciliation and open new directions for understanding motile cilia physiology

    Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia.

    No full text
    The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints
    corecore