554 research outputs found

    Markerless View Independent Gait Analysis with Self-camera Calibration

    No full text
    We present a new method for viewpoint independent markerless gait analysis. The system uses a single camera, does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for identification by gait, where the advantages of completely unobtrusiveness, remoteness and covertness of the biometric system preclude the availability of camera information and use of marker based technology. Tests on more than 200 video sequences with subjects walking freely along different walking directions have been performed. The obtained results show that markerless gait analysis can be achieved without any knowledge of internal or external camera parameters and that the obtained data that can be used for gait biometrics purposes. The performance of the proposed method is particularly encouraging for its appliance in surveillance scenarios

    Reversible and Irreversible Spacetime Thermodynamics for General Brans-Dicke Theories

    Full text link
    We derive the equations of motion for Palatini F(R) gravity by applying an entropy balance law T dS= \delta Q+\delta N to the local Rindler wedge that can be constructed at each point of spacetime. Unlike previous results for metric F(R), there is no bulk viscosity term in the irreversible flux \delta N. Both theories are equivalent to particular cases of Brans-Dicke scalar-tensor gravity. We show that the thermodynamical approach can be used ab initio also for this class of gravitational theories and it is able to provide both the metric and scalar equations of motion. In this case, the presence of an additional scalar degree of freedom and the requirement for it to be dynamical naturally imply a separate contribution from the scalar field to the heat flux \delta Q. Therefore, the gravitational flux previously associated to a bulk viscosity term in metric F(R) turns out to be actually part of the reversible thermodynamics. Hence we conjecture that only the shear viscosity associated with Hartle-Hawking dissipation should be associated with irreversible thermodynamics.Comment: 12 pages, 1 figure; v2: minor editing to clarify Section III, fixed typos; v3: fixed typo

    Growth and Demography of the Solitary Scleractinian Coral Leptopsammia pruvoti along a Sea Surface Temperature Gradient in the Mediterranean Sea

    Get PDF
    The demographic traits of the solitary azooxanthellate scleractinian Leptopsammia pruvoti were determined in six populations on a sea surface temperature (SST) gradient along the western Italian coasts. This is the first investigation of the growth and demography characteristics of an azooxanthellate scleractinian along a natural SST gradient. Growth rate was homogeneous across all populations, which spanned 7 degrees of latitude. Population age structures differed between populations, but none of the considered demographic parameters correlated with SST, indicating possible effects of local environmental conditions. Compared to another Mediterranean solitary scleractinian, Balanophyllia europaea, zooxanthellate and whose growth, demography and calcification have been studied in the same sites, L. pruvoti seems more tolerant to temperature increase. The higher tolerance of L. pruvoti, relative to B. europaea, may rely on the absence of symbionts, and thus the lack of an inhibition of host physiological processes by the heat-stressed zooxanthellae. However, the comparison between the two species must be taken cautiously, due to the likely temperature differences between the two sampling depths. Increasing research effort on determining the effects of temperature on the poorly studied azooxanthellate scleractinians may shed light on the possible species assemblage shifts that are likely to occur during the current century as a consequence of global climatic change

    Kommerell’s diverticulum and aneurysmal right-sided aortic arch: A case report and review of the literature

    Get PDF
    AbstractRight-sided aortic arch is a rare variant of the thoracic vascular anatomy that may be accompanied by an aberrant origin of the left subclavian artery. We report a true aneurysm of the distal arch and descending thoracic aorta in a patient with right-sided arch and review previous descriptions of aneurysms of anomalous right-sided aortas. In our patient, the left subclavian artery originated at the junction between the distal arch and the descending thoracic aorta located in the right chest and was aneurysmal (Kommerell’s diverticulum); the thoracic aorta was also aneurysmal. Extra-anatomic left subclavian-to-carotid transposition was performed before the intrathoracic procedure. Subsequently, a right thoracotomy provided adequate exposure for repairing the aortic aneurysm and oversewing the aneurysmal origin of the subclavian artery. Because the distal aortic arch was involved, deep hypothermia and circulatory arrest were used. Only five previous instances of true aneurysms of a right-sided aortic arch have been reported; four of these patients underwent operative repair (via bilateral thoracotomy, median sternotomy, or right thoracotomy). We believe that a right thoracotomy provides good exposure and avoids the morbidity associated with bilateral thoracotomy. The reconstruction of the subclavian artery has not previously been reported in this setting. Performing subclavian reconstruction as an extrathoracic procedure before the intrathoracic repair would be expected to reduce the subsequent risk of distal ischemia or subclavian steal without increasing the overall morbidity associated with the procedure. (J Vasc Surg 2000;32:1208-14.

    Extreme flooding events in coastal lagoons: seawater parameters and rainfall over a six-year period in the Mar Menor (SE Spain)

    Get PDF
    Climate change is one of the main problems currently strongly conditioning ecosystems all over the world. Coastal lagoons are amongst the most vulnerable habitats, and they are undergoing extensive human impact due to their high production rates and the close proximity of urban and agricultural centers. The Mar Menor, the largest saltwater lagoon in Europe, is an example of a highly impacted ecosystem. In December 2016 and September 2019, climate change-induced DANA (upper-level isolated atmospheric depression) flooding events took place there, temporarily altering the lagoon oceanographic properties. Data gathered throughout the lagoon (11 stations inside and 1 outside the lagoon) from 2016 to 2021 were analyzed in order to assess the variability of seawater parameters: salinity, density, chlorophyll-a, turbidity, and dissolved oxygen, due to DANA events. Results showed a change in seawater parameters that were reestablished at different rates, 4 and 10 months in 2016 and 2019, respectively, following a description of the environmental conditions and effects that have been reported after extreme rainfall in the lagoon. The amount of rainfall correlated with changes in the analyzed seawater parameters, such as an increase in turbidity and chlorophyll-a values. Furthermore, turbidity correlated with chlorophyll-a and oxygen saturation, while density correlated with salinity. Such extreme weather events are worsened by climate change, growing more frequent and between shorter intervals in time. In order to decelerate ecosystem decline, comprehensive management plans are needed to address the various factors that might add to anthropic impacts in natural environments

    Environmental infuence on calcifcation of the bivalve Chamelea gallina along a latitudinal gradient in the Adriatic Sea

    Get PDF
    Environmental factors are encoded in shells of marine bivalves in the form of geochemical properties, shell microstructure and shell growth rate. Few studies have investigated how shell growth is affected by habitat conditions in natural populations of the commercial clam Chamelea gallina. Here, skeletal parameters (micro-density and apparent porosity) and growth parameters (bulk density, linear extension and net calcification rates) were investigated in relation to shell sizes and environmental parameters along a latitudinal gradient in the Adriatic Sea (400 km). Net calcification rates increased with increasing solar radiation, sea surface temperature and salinity and decreasing Chlorophyll concentration in immature and mature shells. In immature shells, which are generally more porous than mature shells, enhanced calcification was due to an increase in bulk density, while in mature shells was due to an increase in linear extension rates. The presence of the Po river in the Northern Adriatic Sea was likely the main driver of the fluctuations observed in environmental parameters, especially salinity and Chlorophyll concentration, and seemed to negatively affect the growth of C. gallina

    Sexual reproduction and biometry of the nonzooxanthellate papillose cup coral Paracyathus pulchellus

    Get PDF
    Basic information on the reproductive biology of many scleractinian corals species is limited or entirely lacking, particularly from temperate zones, though it is essential for a better understanding of their ecology. This study describes the morphological aspects and the annual cycle of gametogenesis and biometric parameters of the papillose cup coral Paracyathus pulchellus collected at Palinuro (Italy, Southern Tyrrhenian Sea), filling a knowledge gap about the reproductive biology of a widespread Mediterranean and Northern Atlantic coral. Samples of P. pulchellus were collected by SCUBA diving between 5- and 10-meters depth during 18 monthly collections from June 2010 to December 2011. Sexually active polyps displayed either oocytes or spermaries, indicating that P. pulchellus was gonochoric. The sex ratio of sexually active polyps was 1:1. Gametogenesis began with undifferentiated germ cells arose in the gastrodermis that migrated towards the mesoglea of the mesentery where they completed the development. During spermatogenesis, spermary diameter increased from 25 to 83 µm. Oocyte diameter ranged from 9 to 146 µm and during oogenesis the nucleus/cytoplasm ratio decreased due to the accumulation of yolk. The nucleus migrated to the periphery of the oocyte adhering closely to the cell membrane. No embryo was observed in the coelenteric cavity of the polyps, suggesting an external development of planktotrophic larvae due to the small-sized mature oocytes and a possible broadcast spawning reproductive mode. Gonadal index of both females and males increased significantly from August until November and fertilization took place from November to January. Only sexually inactive individuals were observed from February to April, suggesting a quiescence period in both males and females. Seasonal variations in water temperature and photoperiod may have a key role in regulating gametogenesis. The analysis of the main biometric parameters (polyp width, height, dry skeletal mass, volume, surface/volume ratio and bulk skeletal density) showed a negative correlation between size and skeletal density, and no sexual dimorphism

    Reproduction of the azooxanthellate coral Caryophyllia inornata is not affected by temperature along an 850 km gradient on the Western Italian coast

    Get PDF
    The Intergovernmental Panel on Climate Change (IPCC) predicted that ocean surface temperature will rise of 0.6–2.0◦C by 2100. Ocean warming is expected to produce strong impacts on marine ecosystems such as coral reefs, affecting their physiological events including reproductive processes. To date, relatively few studies have examined the effects of climate change on the reproductive success of temperate corals and even less in the azooxanthellate ones. This study examined the reproductive output of the azooxanthellate Mediterranean coral Caryophyllia inornata along a wide latitudinal gradient of seawater temperature and solar radiation. A total of 260 samples, collected from five populations along the Western Italian coast, have been analyzed through histological techniques. The intriguing aspects characterizing all populations of C. inornata along the latitudinal gradient are a strong male-biased sex ratio and the presence of embryos in all stages of development throughout the year in females, males, and sexually inactive individuals. This peculiarity could suggest a mixed strategy of sexual and asexual reproduction in this species as has been observed for some anemones of the genus Actinia. Fecundity and spermary abundance (i.e., the number of reproductive elements per body volume unit), gonadal index (i.e., the percentage of body volume occupied by the germ cells) and fertility (i.e., the number of embryos per body volume unit) in females, males and sexually inactive individuals were unrelated to solar radiation and temperature along the latitudinal gradient. These results suggest that the reproduction in C. inornata is not affected by increasing solar radiation and temperature. The lack of zooxanthellae could make this species less dependent on these environmental parameters, as previously hypothesized for another azooxanthellate species, Leptopsammia pruvoti, investigated along the same gradient

    Recovering and Exploiting Aragonite and Calcite Single Crystals with Biologically Controlled Shapes from Mussel Shells

    Get PDF
    Control over the shape and morphology of single crystals is a theme of great interest in fundamental science and for technological application. Many synthetic strategies to achieve this goal are inspired by biomineralization processes. Indeed, organisms are able to produce crystals with high fidelity in shape and morphology utilizing macromolecules that act as modifiers. An alternative strategy can be the recovery of crystals from biomineralization products, in this case, seashells. In particular, waste mussel shells from aquaculture are considered. They are mainly built up of single crystals of calcite fibers and aragonite tablets forming an outer and an inner layer, respectively. A simple mechanochemical treatment has been developed to separate and recover these two typologies of single crystals. The characterization of these single crystals showed peculiar properties with respect to the calcium carbonate from quarry or synthesis. We exploited these biomaterials in the water remediation field using them as substrate adsorbing dyes. We found that these substrates show a high capability of adsorption for anionic dye, such as Eosin Y, but a low capability of adsorption for cationic dyes, such as Blue Methylene. The adsorption was reversible at pH 5.6. This application represents just an example of the potential use of these biogenic single crystals. We also envision potential applications as reinforcing fillers and optical devices
    • …
    corecore