485 research outputs found

    Powdery mildew of Vitis: Papillae (wall appositions) as a host response to infection

    Get PDF
    Powdery mildew, caused by Uncinula necator (ScHW.) BURR., of grapevines, as exemplified by cv. Rosette, induces papillae (wall appositions) inside periclinal cell walls. Papillae occur in epidermal and subepidermal cells of leaves, petioles, cluster rachises and green shoots. Aniline blue fluorescence tests showed the papillae to be composed of callose (polysaccharides). Ultrastructurally, they are characterized by vesicles in the electron-dense material.L'oïdium de la vigne: Papillae (appositions du paroi) comme un répons de l'hôte au infection L'oïdium, provoqué par Uncinula necator (ScHW.) BURR., de la vigne, par l'exemple du cultivar Rosette, produit papillae (appositions du paroi) en dedans des parois periclinales des cellules. On a vu les papillae dans des cellules épidermiques et subépidermiques des feuilles, des pétioles, des rafles et des rameaux verts. La fluorescence avec bleu d'aniline a démontré que les papillae consistent en callose (polysaccharides). Au microscope élect ronique à transmission, elles sont sombreuses aux électrons et elles se composent de vésicules

    Single-cell transcriptomic analysis of antiviral responses and viral antagonism in Chikungunya virus-infected synovial fibroblasts

    Get PDF
    In recent years, (re-)emerging arboviruses including Chikungunya virus (CHIKV) and Mayaro virus (MAYV) have caused growing concern due to expansion of insect vector ranges. No protective vaccine or specific antiviral strategies are currently available. Long-term morbidity after CHIKV infection includes debilitating chronic joint pain, which has associated health and economic impact. Here, we analyzed the early cell-intrinsic response to CHIKV and MAYV infection in primary human synovial fibroblasts. This interferon-competent cell type represents a potential source of polyarthralgia induced by CHIKV infection. Synovial fibroblasts from healthy and osteoarthritic donors were similarly permissive to CHIKV and MAYV infection ex vivo. Using RNA-seq, we defined a CHIKV infection-induced transcriptional profile with several hundred interferon-stimulated and arthralgia-mediating genes upregulated. Type I interferon was both secreted by infected fibroblasts and protective when administered exogenously. IL-6 secretion, which mediates chronic synovitis, however, was not boosted by infection. Single-cell RNA-seq and flow cytometric analyses uncovered an inverse correlation of activation of innate immunity and productive infection at the level of individual cells. In summary, primary human synovial fibroblasts serve as bona-fide ex vivo primary cell model of CHIKV infection and provide a valuable platform for studies of joint tissue-associated aspects of CHIKV immunopathogenesis

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition

    COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis

    Get PDF
    To investigate the immune response and mechanisms associated with severe coronavirus disease 2019 (COVID-19), we performed single-cell RNA sequencing on nasopharyngeal and bronchial samples from 19 clinically well-characterized patients with moderate or critical disease and from five healthy controls. We identified airway epithelial cell types and states vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In patients with COVID-19, epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor ACE2, which correlated with interferon signals by immune cells. Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, as indicated by ligand–receptor expression profiles, and activated immune cells, including inflammatory macrophages expressing CCL2, CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL8, IL1B and TNF. The transcriptional differences in critical cases compared to moderate cases likely contribute to clinical observations of heightened inflammatory tissue damage, lung injury and respiratory failure. Our data suggest that pharmacologic inhibition of the CCR1 and/or CCR5 pathways might suppress immune hyperactivation in critical COVID-19

    Subendocardial contractile impairment in chronic ischemic myocardium: assessment by strain analysis of 3T tagged CMR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to quantify myocardial strain on the subendocardial and epicardial layers of the left ventricle (LV) using tagged cardiovascular magnetic resonance (CMR) and to investigate the transmural degree of contractile impairment in the chronic ischemic myocardium.</p> <p>Methods</p> <p>3T tagged CMR was performed at rest in 12 patients with severe coronary artery disease who had been scheduled for coronary artery bypass grafting. Circumferential strain (C-strain) at end-systole on subendocardial and epicardial layers was measured using the short-axis tagged images of the LV and available software (Intag; Osirix). The myocardial segment was divided into stenotic and non-stenotic segments by invasive coronary angiography, and ischemic and non-ischemic segments by stress myocardial perfusion scintigraphy. The difference in C-strain between the two groups was analyzed using the Mann-Whitney U-test. The diagnostic capability of C-strain was analyzed using receiver operating characteristics analysis.</p> <p>Results</p> <p>The absolute subendocardial C-strain was significantly lower for stenotic (-7.5 ± 12.6%) than non-stenotic segment (-18.8 ± 10.2%, p < 0.0001). There was no difference in epicardial C-strain between the two groups. Use of cutoff thresholds for subendocardial C-strain differentiated stenotic segments from non-stenotic segments with a sensitivity of 77%, a specificity of 70%, and areas under the curve (AUC) of 0.76. The absolute subendocardial C-strain was significantly lower for ischemic (-6.7 ± 13.1%) than non-ischemic segments (-21.6 ± 7.0%, p < 0.0001). The absolute epicardial C-strain was also significantly lower for ischemic (-5.1 ± 7.8%) than non-ischemic segments (-9.6 ± 9.1%, p < 0.05). Use of cutoff thresholds for subendocardial C-strain differentiated ischemic segments from non-ischemic segments with sensitivities of 86%, specificities of 84%, and AUC of 0.86.</p> <p>Conclusions</p> <p>Analysis of tagged CMR can non-invasively demonstrate predominant impairment of subendocardial strain in the chronic ischemic myocardium at rest.</p

    The Antiviral Activity of the Cellular Glycoprotein LGALS3BP/90K Is Species Specific.

    Get PDF
    Cellular antiviral proteins interfere with distinct steps of replication cycles of viruses. The galectin 3 binding protein (LGALS3BP, also known as 90K) was previously shown to lower the infectivity of nascent human immunodeficiency virus type 1 (HIV-1) virions when expressed in virus-producing cells. This antiviral effect was accompanied by impaired gp160Env processing and reduced viral incorporation of mature Env glycoproteins. Here, we examined the ability of 90K orthologs from primate species to reduce the particle infectivity of distinct lentiviruses. We show that 90K's ability to diminish the infectivity of lentiviral particles is conserved within primate species, with the notable exception of 90K from rhesus macaque. Comparison of active and inactive 90K orthologs and variants uncovered the fact that inhibition of processing of the HIV-1 Env precursor and reduction of cell surface expression of HIV-1 Env gp120 are required, but not sufficient, for 90K-mediated antiviral activity. Rather, 90K-mediated reduction of virion-associated gp120 coincided with antiviral activity, suggesting that 90K impairs the incorporation of HIV-1 Env into budding virions. We show that a single "humanizing" amino acid exchange in the BTB (broad-complex, tramtrack, and bric-à-brac)/POZ (poxvirus and zinc finger) domain is sufficient to fully rescue the antiviral activity of a shortened version of rhesus macaque 90K, but not that of the full-length protein. Comparison of the X-ray structures of the BTB/POZ domains of 90K from rhesus macaques and humans point toward a slightly larger hydrophobic patch at the surface of the rhesus macaque BTB domain that may modulate a direct interaction with either a second 90K domain or a different protein. &lt;b&gt;IMPORTANCE&lt;/b&gt; The cellular 90K protein has been shown to diminish the infectivity of nascent HIV-1 particles. When produced in 90K-expressing cells, particles bear smaller amounts of the HIV-1 Env glycoprotein, which is essential for attaching to and entering new target cells in the subsequent infection round. However, whether the antiviral function of 90K is conserved across primates is unknown. Here, we found that 90K orthologs from most primate species, but, surprisingly, not from rhesus macaques, inhibit HIV-1. The introduction of a single amino acid exchange into a short version of the rhesus macaque 90K protein, consisting of the two intermediate domains of 90K, resulted in full restoration of antiviral activity. Structural elucidation of the respective domain suggests that the absence of antiviral activity in the rhesus macaque factor may be linked to a subtle change in protein-protein interaction

    Polarity Changes in the Transmembrane Domain Core of HIV-1 Vpu Inhibits Its Anti-Tetherin Activity

    Get PDF
    Tetherin (BST-2/CD317) is an interferon-inducible antiviral protein that restricts the release of enveloped viruses from infected cells. The HIV-1 accessory protein Vpu can efficiently antagonize this restriction. In this study, we analyzed mutations of the transmembrane (TM) domain of Vpu, including deletions and substitutions, to delineate amino acids important for HIV-1 viral particle release and in interactions with tetherin. The mutants had similar subcellular localization patterns with that of wild-type Vpu and were functional with respect to CD4 downregulation. We showed that the hydrophobic binding surface for tetherin lies in the core of the Vpu TM domain. Three consecutive hydrophobic isoleucine residues in the middle region of the Vpu TM domain, I15, I16 and I17, were important for stabilizing the tetherin binding interface and determining its sensitivity to tetherin. Changing the polarity of the amino acids at these positions resulted in severe impairment of Vpu-induced tetherin targeting and antagonism. Taken together, these data reveal a model of specific hydrophobic interactions between Vpu and tetherin, which can be potentially targeted in the development of novel anti-HIV-1 drugs

    Nonproductive exposure of PBMCs to SARS‐CoV ‐2 induces cell‐intrinsic innate immune responses

    Get PDF
    Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19
    corecore