88 research outputs found

    Phenotypic characterization of patient dengue virus isolates in BALB/c mice differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome

    Get PDF
    International audienceBACKGROUND: Dengue virus (DENV) infection is the most common arthropod-borne viral disease in man and there are approximately 100 million infections annually. Despite the global burden of DENV infections many important questions regarding DENV pathogenesis remain unaddressed due to the lack of appropriate animal models of infection and disease. A major problem is the fact that no non-human species naturally develop disease similar to human dengue fever (DF) or dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Apart from other risk factors for severe dengue such as host genetics and secondary infection with a heterologous DENV, virus virulence is a risk factor that is not well characterized. RESULTS: Three clinical DENV-1 isolates from Cambodian patients experiencing the various forms of dengue disease (DF, DHF, and DSS) were inoculated in BALB/c mice at three different concentrations. The DENV-1 isolates had different organ and cell tropism and replication kinetics. The DENV-1 isolate from a DSS patient infected the largest number of mice and was primarily neurotropic. In contrast, the DENV-1 isolates from milder clinical dengue cases infected predominantly lungs and liver, and to a lesser extent brain. In addition, infection with the DENV isolate derived from a DSS patient persisted for more than two weeks in a majority of mice compared to the other DENV-1 isolates that peaked during the first week. CONCLUSIONS: These results confirm the in vitro findings of the same DENV-1 isolates, that showed that the isolate derived from a DSS patient can be distinguished based on phenotypic characteristics that differ from the isolates derived from a DF and DHF case 1. We observed in this study that the DSS virus isolate persist longer in vivo with extensive neuroinvasion in contrast to the other DENV-1 isolates originating in milder human cases. Genomic characterization of the three clinical isolates identified six amino acid substitutions unique for the DSS isolates that were located both in structural genes (M and E) and in non-structural genes (NS1, NS3, and NS5). The characterization of these clinically distinct DENV-1 isolates highlight that DENVs within the same genotype may have different in vivo phenotypes. HIGHLIGHTS: * Clinical DENV-1 isolates have different organ tropism in BALB/c mice.* The isolate from a DSS patient is primarily neurotropic compared to the other isolates.* The DENV-1 isolates have different in vivo replication kinetics.* The isolate from a DSS patient persists longer compared to the other isolates.* These phenotypic differences confirm our earlier in vitro findings with the same DENV-1 isolates. Thus, DENVs within the same serotype and genotype may differ enough to affect clinical conditions in vivo

    Clinical and Virological Factors Influencing the Performance of a NS1 Antigen-Capture Assay and Potential Use as a Marker of Dengue Disease Severity

    Get PDF
    Dengue is the most prevalent arthropod-borne disease in tropical regions. The clinical manifestation may vary from asymptomatic to potentially fatal dengue shock syndrome. Early laboratory confirmation of dengue diagnosis is essential since many symptoms are not specific. Dengue non-structural protein 1 (NS1) may be used in simple antigen-capture ELISA for early detection of dengue virus infection. Our result demonstrated that the Platelia NS1 antigen detection kit had a quite low overall sensitivity. However, sensitivity rises significantly when used in combination with MAC-ELISA. When taking into account the various forms of dengue infection, the NS1 antigen detection was found relatively high in patients sampled during the first 3 days of fever onset, in patients with primary infection, DENV-1 infection, with high level of viremia and in mild form of dengue fever. In asymptomatically infected individuals, RT-PCR assay has proved to be more sensitive than NS1 antigen detection. Moreover, the NS1 antigen level correlated significantly with high viremia and low level of NS1 antigen was associated with more severe disease

    Endodontic Biofilms and Secondary Infection of Total Hip Arthroplasty

    Full text link
    peer reviewedBiofilms are well recognised in different settings. Endodontic biofilms containing bacteria responsible for bacteraemia and secondary infection of total hip arthroplasties (THA) represent a diagnostic challenge because they are often asymptomatic. Their treatment is difficult and inadequate management of such unrecognised sources of systemic infection can lead to the devastating situation of an infected arthroplasty necessitating implant removal, long term antibiotic treatment and secondary implantation of a new prosthesis. Since about ten percent of secondary infected THA can have a dental origin, this article is intended to give guidelines to all intervening care providers: general practitioner, orthopaedic surgeon and dentist
    corecore