5 research outputs found

    The GRETA project: the contribution of near-surface geothermal energy for the energetic self-sufficiency of Alpine regions

    Get PDF
    The Alpine regions are deeply involved in the challenge set by climate change, which is a threat for their environment and for important economic activities such as tourism. The heating and cooling of buildings account for a major share of the total primary energy consumption in Europe, and hence the energy policies should focus on this sector to achieve the greenhouse gas reduction targets set by international agreements. Geothermal heat pump is one of the least carbon-intensive technologies for the heating and cooling of buildings. It exploits the heat stored within the ground, a local renewable energy source which is widely available across the Alpine territory. Nevertheless, it has been little considered by European policies and cooperation projects. GRETA (near-surface Geothermal REsources in the Territory of the Alpine space) is a cooperation project funded by the EU INTERREG-Alpine Space program, aiming at demonstrating the potential of shallow geothermal energy and to foster its integration into energy planning instruments. It started in December 2015 and will last three years, involving 12 partners from Italy, France, Switzerland, Germany, Austria, and Slovenia. In this paper, the project is presented, along with the results of the first year of work

    Governance of shallow geothermal energy resources

    Get PDF
    Successful electrification of cities' heating and cooling demands depends on the sustainable implementation of highly efficient ground source heat pumps (GSHP). During the last decade, the use of shallow geothermal energy (SGE) resources in urban areas has experienced an unprecedented boost which nowadays is still showing a steady 9% market growth trend. However, the intensive market incorporation experienced by this technology entails different responsibilities towards the long-term technical and environmental sustainability in order to maintain this positive trend. Here we present a SGE management framework structure and a governance model agreed among 13 European Geological Surveys, providing a roadmap for the different levels of management development, adaptable to any urban scale, and independent of the hydrogeological conditions and the grade of development of SGE technology implementation. The management approach reported is based on the adaptive management concept, thus offering a working flow for the non-linear relationship between planning, implementation and control that establishes a cyclical and iterative management process. The generalized structure of the SGE management framework provided allows the effective analysis of policy to identify and plan for management problems and to select the best management objectives, strategies and measures according to the policy principles proposed here

    Results from the GeoERA MUSE shallow geothermal project – UK Cardiff pilot area

    Get PDF
    Shallow geothermal energy systems deployment will play an important part in decarbonisation of heating and cooling of buildings. This trend will stimulate research into ground physical, thermal and hydraulic properties and impacts on urban aquifers and infrastructures. Moreover, subsurface heat extraction must be perceived as reliable, sustainable and equitable to create an environment for social acceptance and uptake of geothermal technologies. The EU H2020-funded GeoERA ‘MUSE’ project (2018-2021), involved 16 Geological Surveys, who shared methods and developed harmonised workflows for the evaluation of shallow geothermal resources in European urban areas (Götzl et al., EGC 2022). The project deployed and tested ground characterisation and geophysical monitoring techniques, monitored GSHP schemes, analysed the local market situation, produced fact sheets, made policy recommendations, and developed adaptive management strategies. The research included in-field monitoring studies in 14 urban pilot areas across Europe, including three UK urban pilot areas; Cardiff in south Wales, Glasgow in west Scotland and Colchester in east England. This paper summarises the result with a focus on the Cardiff area

    Improving the Efficiency of District Heating and Cooling Using a Geothermal Technology: Underground Thermal Energy Storage (UTES)

    No full text
    For efficient operation of heating and cooling grids, underground thermal energy storage (UTES) can be a key element. This is due to its ability to seasonally store heat or cold addressing the large mismatch between supply and demand. This technology is already available and there are many operational examples, both within and outside a district heating network. Given the range of available UTES technologies, they are feasible to install almost everywhere. Compared to other storage systems, UTES have the advantage of being able to manage large quantities and fluxes of heat without occupying much surface area, although the storage characteristics are always site specific and depend on the geological and geothermal characteristics of the subsoil. UTES can manage fluctuating production from renewable energy sources, both in the short and long term, and fluctuating demand. It can be used as an instrument to exploit heat available from various sources, e.g., solar, waste heat from industry, geothermal, within the same district heating system. The optimization of energy production, the reduction in consumption of primary energy and the reduction in emission of greenhouse gases are guaranteed with UTES, especially when coupled with district heating and cooling networks.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Water ResourcesGeo-engineerin

    The GRETA project: the contribution of near-surface geothermal energy for the energetic self-sufficiency of Alpine regions

    Get PDF
    The Alpine regions are deeply involved in the challenge set by climate change, which is a threat for their environment and for important economic activities such as tourism. The heating and cooling of buildings account for a major share of the total primary energy consumption in Europe, and hence the energy policies should focus on this sector to achieve the greenhouse gas reduction targets set by international agreements. Geothermal heat pump is one of the least carbon-intensive technologies for the heating and cooling of buildings. It exploits the heat stored within the ground, a local renewable energy source which is widely available across the Alpine territory. Nevertheless, it has been little considered by European policies and cooperation projects. GRETA (near-surface Geothermal REsources in the Territory of the Alpine space) is a cooperation project funded by the EU INTERREG-Alpine Space program, aiming at demonstrating the potential of shallow geothermal energy and to foster its integration into energy planning instruments. It started in December 2015 and will last three years, involving 12 partners from Italy, France, Switzerland, Germany, Austria, and Slovenia. In this paper, the project is presented, along with the results of the first year of work
    corecore