512 research outputs found
Predictability sieve, pointer states, and the classicality of quantum trajectories
We study various measures of classicality of the states of open quantum
systems subject to decoherence. Classical states are expected to be stable in
spite of decoherence, and are thought to leave conspicuous imprints on the
environment. Here these expected features of environment-induced superselection
(einselection) are quantified using four different criteria: predictability
sieve (which selects states that produce least entropy), purification time
(which looks for states that are the easiest to find out from the imprint they
leave on the environment), efficiency threshold (which finds states that can be
deduced from measurements on a smallest fraction of the environment), and
purity loss time (that looks for states for which it takes the longest to lose
a set fraction of their initial purity). We show that when pointer states --
the most predictable states of an open quantum system selected by the
predictability sieve -- are well defined, all four criteria agree that they are
indeed the most classical states. We illustrate this with two examples: an
underdamped harmonic oscillator, for which coherent states are unanimously
chosen by all criteria, and a free particle undergoing quantum Brownian motion,
for which most criteria select almost identical Gaussian states (although, in
this case, predictability sieve does not select well defined pointer states.)Comment: 10 pages, 13 figure
Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1 to S phase transition and identifies a conserved family of proteins
Regulation of cell cycle progression occurs in part through the targeted degradation of both activating and inhibitory subunits of the cyclin-dependent kinases. During G1, CDC4, encoding a WD-40 repeat protein, and CDC34, encoding a ubiquitin-conjugating enzyme, are involved in the destruction of these regulators. Here we describe evidence indicating that CDC53 also is involved in this process. Mutations in CDC53 cause a phenotype indistinguishable from those of cdc4 and cdc34 mutations, numerous genetic interactions are seen between these genes, and the encoded proteins are found physically associated in vivo. Cdc53p defines a large family of proteins found in yeasts, nematodes, and humans whose molecular functions are uncharacterized. These results suggest a role for this family of proteins in regulating cell cycle proliferation through protein degradation
Human gene copy number spectra analysis in congenital heart malformations
The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways
Physical interpretation of stochastic Schroedinger equations in cavity QED
We propose physical interpretations for stochastic methods which have been
developed recently to describe the evolution of a quantum system interacting
with a reservoir. As opposed to the usual reduced density operator approach,
which refers to ensemble averages, these methods deal with the dynamics of
single realizations, and involve the solution of stochastic Schr\"odinger
equations. These procedures have been shown to be completely equivalent to the
master equation approach when ensemble averages are taken over many
realizations. We show that these techniques are not only convenient
mathematical tools for dissipative systems, but may actually correspond to
concrete physical processes, for any temperature of the reservoir. We consider
a mode of the electromagnetic field in a cavity interacting with a beam of two-
or three-level atoms, the field mode playing the role of a small system and the
atomic beam standing for a reservoir at finite temperature, the interaction
between them being given by the Jaynes-Cummings model. We show that the
evolution of the field states, under continuous monitoring of the state of the
atoms which leave the cavity, can be described in terms of either the Monte
Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger
equation, depending on the system configuration. We also show that the Monte
Carlo Wave-Function approach leads, for finite temperatures, to localization
into jumping Fock states, while the diffusion equation method leads to
localization into states with a diffusing average photon number, which for
sufficiently small temperatures are close approximations to mildly squeezed
states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution
postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.
State and dynamical parameter estimation for open quantum systems
Following the evolution of an open quantum system requires full knowledge of
its dynamics. In this paper we consider open quantum systems for which the
Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system
similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]:
a radiatively damped atom driven by an unknown Rabi frequency (as
would occur for an atom at an unknown point in a standing light wave). By
measuring the environment of the system, knowledge about the system state, and
about the uncertain dynamical parameter, can be acquired. We find that these
two sorts of knowledge acquisition (quantified by the posterior distribution
for , and the conditional purity of the system, respectively) are quite
distinct processes, which are not strongly correlated. Also, the quality and
quantity of knowledge gain depend strongly on the type of monitoring scheme. We
compare five different detection schemes (direct, adaptive, homodyne of the
quadrature, homodyne of the quadrature, and heterodyne) using four
different measures of the knowledge gain (Shannon information about ,
variance in , long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure
Decoherence and thermalization dynamics of a quantum oscillator
We introduce the quantitative measures characterizing the rates of
decoherence and thermalization of quantum systems. We study the time evolution
of these measures in the case of a quantum harmonic oscillator whose relaxation
is described in the framework of the standard master equation, for various
initial states (coherent, `cat', squeezed and number). We establish the
conditions under which the true decoherence measure can be approximated by the
linear entropy . We show that at low temperatures and for
highly excited initial states the decoherence process consists of three
distinct stages with quite different time scales. In particular, the `cat'
states preserve 50% of the initial coherence for a long time interval which
increases logarithmically with increase of the initial energy.Comment: 24 pages, LaTex, 8 ps figures, accepted for publication in J. Opt.
Linear stochastic wave-equations for continuously measured quantum systems
While the linearity of the Schr\"odinger equation and the superposition
principle are fundamental to quantum mechanics, so are the backaction of
measurements and the resulting nonlinearity. It is remarkable, therefore, that
the wave-equation of systems in continuous interaction with some reservoir,
which may be a measuring device, can be cast into a linear form, even after the
degrees of freedom of the reservoir have been eliminated. The superposition
principle still holds for the stochastic wave-function of the observed system,
and exact analytical solutions are possible in sufficiently simple cases. We
discuss here the coupling to Markovian reservoirs appropriate for homodyne,
heterodyne, and photon counting measurements. For these we present a derivation
of the linear stochastic wave-equation from first principles and analyze its
physical content.Comment: 34 pages, Revte
Targeting qubit states using open-loop control
We present an open-loop (bang-bang) scheme which drives an open two-level
quantum system to any target state, while maintaining quantum coherence
throughout the process. The control is illustrated by a realistic simulation
for both adiabatic and thermal decoherence. In the thermal decoherence regime,
the control achieved by the proposed scheme is qualitatively similar, at the
ensemble level, to the control realized by the quantum feedback scheme of Wang,
Wiseman, and Milburn [Phys. Rev. A 64, #063810 (2001)] for the spontaneous
emission of a two-level atom. The performance of the open-loop scheme compares
favorably against the quantum feedback scheme with respect to robustness,
target fidelity and transition times.Comment: 27 pages, 7 figure
Stochastic simulations of conditional states of partially observed systems, quantum and classical
In a partially observed quantum or classical system the information that we
cannot access results in our description of the system becoming mixed even if
we have perfect initial knowledge. That is, if the system is quantum the
conditional state will be given by a state matrix and if classical
the conditional state will be given by a probability distribution
where is the result of the measurement. Thus to determine the evolution of
this conditional state under continuous-in-time monitoring requires an
expensive numerical calculation. In this paper we demonstrating a numerical
technique based on linear measurement theory that allows us to determine the
conditional state using only pure states. That is, our technique reduces the
problem size by a factor of , the number of basis states for the system.
Furthermore we show that our method can be applied to joint classical and
quantum systems as arises in modeling realistic measurement.Comment: 16 pages, 11 figure
- …
