610 research outputs found
Biocidal effects of silver Final technical report
Elimination of microbial and viral agents from spacecraft water systems by silver ions from electrolytic ion generato
Biocidal effects of silver Final technical report
Biocidal effects of silver with application to spacecraft water system
Discrete-step evaporation of an atomic beam
We present a theoretical analysis of the evaporative cooling of a
magnetically guided atomic beam by means of discrete radio-frequency antennas.
First we derive the changes in flux and temperature, as well as in collision
rate and phase-space density, for a single evaporation step. Next we show how
the occurrence of collisions during the propagation between two successive
antennas can be probed. Finally, we discuss the optimization of the evaporation
ramp with several antennas to reach quantum degeneracy. We estimate the number
of antennas required to increase the phase-space density by several orders of
magnitude. We find that at least 30 antennas are needed to gain a factor
in phase-space density.Comment: Submitted to Eur. Phys. J.
HLA Class-II Associated HIV Polymorphisms Predict Escape from CD4+ T Cell Responses.
Antiretroviral therapy, antibody and CD8+ T cell-mediated responses targeting human immunodeficiency virus-1 (HIV-1) exert selection pressure on the virus necessitating escape; however, the ability of CD4+ T cells to exert selective pressure remains unclear. Using a computational approach on HIV gag/pol/nef sequences and HLA-II allelic data, we identified 29 HLA-II associated HIV sequence polymorphisms or adaptations (HLA-AP) in an African cohort of chronically HIV-infected individuals. Epitopes encompassing the predicted adaptation (AE) or its non-adapted (NAE) version were evaluated for immunogenicity. Using a CD8-depleted IFN-γ ELISpot assay, we determined that the magnitude of CD4+ T cell responses to the predicted epitopes in controllers was higher compared to non-controllers (p<0.0001). However, regardless of the group, the magnitude of responses to AE was lower as compared to NAE (p<0.0001). CD4+ T cell responses in patients with acute HIV infection (AHI) demonstrated poor immunogenicity towards AE as compared to NAE encoded by their transmitted founder virus. Longitudinal data in AHI off antiretroviral therapy demonstrated sequence changes that were biologically confirmed to represent CD4+ escape mutations. These data demonstrate an innovative application of HLA-associated polymorphisms to identify biologically relevant CD4+ epitopes and suggests CD4+ T cells are active participants in driving HIV evolution
Broadband laser cooling of trapped atoms with ultrafast pulses
We demonstrate broadband laser cooling of atomic ions in an rf trap using
ultrafast pulses from a modelocked laser. The temperature of a single ion is
measured by observing the size of a time-averaged image of the ion in the known
harmonic trap potential. While the lowest observed temperature was only about 1
K, this method efficiently cools very hot atoms and can sufficiently localize
trapped atoms to produce near diffraction-limited atomic images
Guiding neutral atoms around curves with lithographically patterned current-carrying wires
Laser-cooled neutral atoms from a low-velocity atomic source are guided via a
magnetic field generated between two parallel wires on a glass substrate. The
atoms bend around three curves, each with a 15-cm radius of curvature, while
traveling along a 10-cm-long track. A maximum flux of 2*10^6 atoms/sec is
achieved with a current density of 3*10^4 A/cm^2 in the
100x100-micrometer-cross-section wires. The kinetic energy of the guided atoms
in one transverse dimension is measured to be 42 microKelvin.Comment: 9 page
Molecular landscape of esophageal cancer: implications for early detection and personalized therapy
Esophageal cancer (EC) is one of the most lethal cancers and a public health concern worldwide, owing to late diagnosis and lack of efficient treatment. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are main histopathological subtypes of EC that show striking differences in geographical distribution, possibly due to differences in exposure to risk factors and lifestyles. ESCC and EAC are distinct diseases in terms of cell of origin, epidemiology, and molecular architecture of tumor cells. Past efforts aimed at translating potential molecular candidates into clinical practice proved to be challenging, underscoring the need for identifying novel candidates for early diagnosis and therapy of EC. Several major international efforts have brought about important advances in identifying molecular landscapes of ESCC and EAC toward understanding molecular mechanisms and critical molecular events driving the progression and pathological features of the disease. In our review, we summarize recent advances in the areas of genomics and epigenomics of ESCC and EAC, their mutational signatures and immunotherapy. We also discuss implications of recent advances in characterizing the genome and epigenome of EC for the discovery of diagnostic/prognostic biomarkers and development of new targets for personalized treatment and prevention
Expression of a Constitutively Active Nitrate Reductase Variant in Tobacco Reduces Tobacco-Specific Nitrosamine Accumulation in Cured Leaves and Cigarette Smoke
Burley tobaccos (Nicotiana tabacum) display a nitrogen-use-deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco-specific nitrosamines (TSNAs). Two TSNA species, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen-assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) dramatically decreased free nitrate levels in the leaves. Field-grown tobacco plants expressing this NR variant exhibited greatly reduced levels of TSNAs in both cured leaves and mainstream smoke of cigarettes made from these materials. Decreasing leaf nitrate levels via expression of a constitutively active NR enzyme represents an exceptionally promising means for reducing the production of NNN and NNK, two of the most well-documented animal carcinogens found in tobacco products
Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cohen, N. R., Noble, A. E., Moran, D. M., McIlvin, M. R., Goepfert, T. J., Hawco, N. J., German, C. R., Horner, T. J., Lamborg, C. H., McCrow, J. P., Allen, A. E., & Saito, M. A. Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean. Biogeosciences, 18(19), (2021): 5397–5422, https://doi.org/10.5194/bg-18-5397-2021.Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an important source of metals to microorganisms, especially those inhabiting low-iron waters, such as in the southwest Pacific Ocean. Previous measurements of primordial 3He indicate a significant hydrothermal source originating in the northeastern (NE) Lau Basin, with the plume advecting into the southwest Pacific Ocean at 1500–2000 m depth (Lupton et al., 2004). Studies investigating the long-range transport of trace metals associated with such dispersing plumes are rare, and the biogeochemical impacts on local microbial physiology have not yet been described. Here we quantified dissolved metals and assessed microbial metaproteomes across a transect spanning the tropical and equatorial Pacific with a focus on the hydrothermally active NE Lau Basin and report elevated iron and manganese concentrations across 441 km of the southwest Pacific. The most intense signal was detected near the Mangatolo Triple Junction (MTJ) and Northeast Lau Spreading Center (NELSC), in close proximity to the previously reported 3He signature. Protein content in distal-plume-influenced seawater, which was high in metals, was overall similar to background locations, though key prokaryotic proteins involved in metal and organic uptake, protein degradation, and chemoautotrophy were abundant compared to deep waters outside of the distal plume. Our results demonstrate that trace metals derived from the NE Lau Basin are transported over appreciable distances into the southwest Pacific Ocean and that bioactive chemical resources released from submarine vent systems are utilized by surrounding deep-sea microbes, influencing both their physiology and their contributions to ocean biogeochemical cycling.This research has been supported by the National Science Foundation (grant nos. 1031271, 1924554, 1850719, 1736599, and 1851007); the Gordon and Betty Moore Foundation (grant no. 3782); and the Simons Foundation (grant no. 544236)
- …