30 research outputs found

    Using building and bridge information for adapting roads to ALS data by means of network snakes

    Get PDF
    In the German Authoritative Topographic Cartographic Information System (ATKIS), the 2D positions and the heights of objects such as roads are stored separately in the digital landscape model (DLM) and digital terrain model (DTM), which is often acquired by airborne laser scanning (ALS). However, an increasing number of applications require a combined processing and visualization of these two data sets. Due to different kinds of acquisition, processing, and modelling discrepancies exist between the DTM and DLM and thus a simple integration may lead to semantically incorrect 3D objects. For example, roads may be situated on strongly tilted DTM parts and rivers sometimes flow uphill. In this paper we propose an algorithm for the adaptation of 2D road centrelines to ALS data by means of network snakes. Generally, the image energy for the snakes is defined based on ALS intensity and height information and derived products. Additionally, buildings and bridges as strong features in height data are exploited in order to support the road adaptation process. Extracted buildings as priors modified by a distance transform are used to create a force of repulsion for the road vectors integrated in the image energy. In contrast, bridges give strong evidence for the correct road position in the height data. Therefore, the image energy is adapted for the bridge points. For that purpose bridge detection in the DTM is performed starting from an approximate position using template matching. Examples are given which apply the concept of network-snakes with new image energy for the adaptation of road networks to ALS data taking advantage of the prior known topology

    Constraint energies for the adaptation of 2d river borderlines to airborne laserscanning data using snakes

    Get PDF
    The German Authoritative Topographic Cartographic Information System (ATKIS) stores the height and the 2D position of the objects in a dual system. The digital terrain model (DTM), often acquired by airborne laser scanning (ALS), supplies the height information in a regular grid, whereas 2D vector data are provided in the digital landscape model (DLM). However, an increasing number of applications, such as flood risk modelling, require the combined processing and visualization of these two data sets. Due to different kinds of acquisition, processing, and modelling discrepancies exist between the DTM and DLM and thus a simple integration may lead to semantically incorrect 3D objects. For example, rivers may flow uphill. In this paper we propose an algorithm for the adaptation of 2D river borderlines to ALS data by means of snakes. Besides the two basic energy terms of the snake, the internal and image energy, 3D object knowledge is introduced in the constraint energy in order to guarantee the semantic correctness of the rivers in a combined data set. The image energy is based on ALS intensity and height information and derived products. Additionally, features of rivers in the DTM, such as the flow direction or the river profile, are formulated as constraints in order to fulfil the semantic properties of rivers and stabilize the adaptation process. Furthermore, the known concept of twin snakes exploits the width of the river and also supports the procedure. Some results are given to show the applicability of the algorithm

    Changes of the Atlantic meridional overturning circulation of the past 30ka recorded in a depth transect at the Blake Outer Ridge

    Get PDF
    Oceans and climate are a tightly coupled system interacting with each other in various ways such as storage of carbon dioxide in the deep ocean. Within the global conveyor belt the Atlantic Meridional Overturning Circulation (AMOC) holds a key function, transporting warm salty surface waters from the tropical to the northern Atlantic where deep water formation takes place. Following the continental rise of North America this newly formed deep water propagates southward as Western Boundary Undercurrent (WBUC) ventilating the deep Atlantic. In the past (e.g. the last glacial cycle) strength and geometry of the AMOC have changed significantly. This study aims to provide a better understanding of the temporal and spatial (also depth depended) evolution of the AMOC in the western Atlantic sector since the last glacial (∼30 ka). We have investigated four sediment cores of the Blake Outer Ridge (30°N, 74°W; ODP 1059 to 1062) in a depth transect from 3000 to 4700 m water depth in the main flow path of the WBUC. We measured four down-core profiles of neodymium (εNd) and 231Pa/230Th isotopes for the reconstruction of water mass provenance and circulation strength of the last ∼30 ka. In contrast to published Nd isotope and 231Pa/230Th records from the Blake Ridge area our records are of unprecedented resolution, resolving climate key features of the North Atlantic region: Heinrich Stadials (HS) 1 and 2, the Last Glacial Maximum (LGM), the Bølling-Allerød and Younger Dryas (YD). Radiogenic Nd isotope signatures during the LGM reveal AABW to be the prevalent water mass in the deep western North Atlantic. The trend to more unradiogenic signatures during the deglaciation point to an increased formation of NADW which was again replaced by AABW during YD. The Holocene shows the most unradiogenic signatures and therefore established NADW. The circulation strength-proxy 231Pa/230Th indicates reduced LGM deep circulation, a pronounced slowdown during HS1 and a strong and deep circulation during the Holocene. Compared to isotopic records from the Bermuda Rise (ODP 1063) we found depth depended geometry changes of the WBUC which have occurred through the last glacial. Here, we focus on how deep northern sourced water has reached during phases of reduced circulation (indicated by increased 231Pa/230Th ratios) and the timing of this southward progradation of lower NADW

    Uptake of 18F-fluorocholine, 18F-fluoro-ethyl- L -tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat

    Get PDF
    Introduction: The positron emission tomography (PET) tracers 18F-fluoro-ethyl-L-tyrosine (FET), 18F-fluorocholine (N,N-dimethyl-N-[18F]fluoromethyl-2-hydroxyethylammonium (FCH]) and 18F-fluoro-2-deoxyglucose (FDG) are used in the diagnosis of brain tumours. The aim of this study was threefold: (a) to assess the uptake of the different tracers in the F98 rat glioma, (b) to evaluate the impact of blood-brain barrier (BBB) disruption and microvessel density (MVD) on tracer uptake and (c) to compare the uptake in the tumours to that in the radiation injuries (induced by proton irradiation of healthy rats) of our previous study. Methods: F98 gliomas were induced in 26 rats. The uptake of FET, FCH and FDG was measured using autoradiography and correlated with histology, disruption of the BBB and MVD. Results: The mean FET, FCH and FDG standardised uptake values (SUVs) in the tumour and the contralateral normal cortex (in parentheses) were 4.19±0.86 (1.32±0.26), 2.98±0.58 (0.51±0.11) and 11.02±3.84 (4.76±1.77) respectively. MVD was significantly correlated only with FCH uptake. There was a trend towards a negative correlation between the degree of BBB disruption and FCH uptake and a trend towards a positive correlation with FET uptake. The ratio of the uptake in tumours to that in the radiation injuries was 1.97 (FCH), 2.71 (FET) and 2.37 (FDG). Conclusion: MVD displayed a significant effect only on FCH uptake. The degree of BBB disruption seems to affect the accumulation of FET and FCH, but not FDG. Mean tumour uptake for all tracers was significantly higher than the accumulation in radiation injurie

    Evolution of the Deep Western Boundary Current inferred from 231Pa/230Th records

    No full text
    As part of the Atlantic Meridional Overturning Circulation (AMOC) the Deep Western Boundary Current (DWBC) transports newly formed NADW southward along the North American continental rise representing the most important lower limb of modern AMOC. Resolving its evolution since the last glacial will drastically improve our understanding about the evolution of AMOC and its connection to (paleo)climate. For our investigations we sampled ODP sites 1059 - 1062 located on the Blake Bahama Outer Ridge (BBOR). The BBOR is ideally located within the modern flow path of the DWBC and is therefore well suited to record past changes in geometry and intensity of the DWBC. We applied the 231Pa/230Th kinematic circulation proxy on sediments from the BBOR that form a depth transect from 3000 to 4700 m water depth. In addition to sortable-silt data from the BBOR, which provide information mainly about changes in the very bottom current strength, the 231Pa/230Th kinematic circulation proxy provides a record of an integrated signal from the overlying water column. In combination with new εNd records from the very same samples, used for identifying the provenance of the prevailing water masses, our 231Pa/230Th records provide insight into past circulation states and the strength of the DWBC over the last 30 ka. Climatic key features such as the Last Glacial Maximum (LGM), deglaciation and Holocene in high-resolution are clearly resolvable. Both 231Pa/230Th and εNd indicate reduced circulation during the Younger Dryas and Heinrich Stadial 1 and 2 in agreement with records from the Bermuda Rise, including ODP site 1063. During the LGM circulation strength was slightly weaker compared to the deep and strong Holocene circulation but still active. With this new depth transect of combined proxy data we are able to reconstruct the intensity of the DWBC more robustly

    Uptake of 18F-fluorocholine, 18F-fluoro-ethyl-L-tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat

    Full text link
    Introduction: The positron emission tomography (PET) tracers 18F-fluoro-ethyl-L-tyrosine (FET), 18F-fluorocholine (N,N-dimethyl-N-[18F]fluoromethyl-2-hydroxyethylammonium (FCH]) and 18F-fluoro-2-deoxyglucose (FDG) are used in the diagnosis of brain tumours. The aim of this study was threefold: (a) to assess the uptake of the different tracers in the F98 rat glioma, (b) to evaluate the impact of blood-brain barrier (BBB) disruption and microvessel density (MVD) on tracer uptake and (c) to compare the uptake in the tumours to that in the radiation injuries (induced by proton irradiation of healthy rats) of our previous study. Methods: F98 gliomas were induced in 26 rats. The uptake of FET, FCH and FDG was measured using autoradiography and correlated with histology, disruption of the BBB and MVD. Results: The mean FET, FCH and FDG standardised uptake values (SUVs) in the tumour and the contralateral normal cortex (in parentheses) were 4.19±0.86 (1.32±0.26), 2.98±0.58 (0.51±0.11) and 11.02±3.84 (4.76±1.77) respectively. MVD was significantly correlated only with FCH uptake. There was a trend towards a negative correlation between the degree of BBB disruption and FCH uptake and a trend towards a positive correlation with FET uptake. The ratio of the uptake in tumours to that in the radiation injuries was 1.97 (FCH), 2.71 (FET) and 2.37 (FDG). Conclusion: MVD displayed a significant effect only on FCH uptake. The degree of BBB disruption seems to affect the accumulation of FET and FCH, but not FDG. Mean tumour uptake for all tracers was significantly higher than the accumulation in radiation injurie

    Development and clinical testing of individual immunoassays for the quantification of serum glycoproteins to diagnose prostate cancer

    Get PDF
    Prostate Cancer (PCa) diagnosis is currently hampered by the high false-positive rate of PSA evaluations, which consequently may lead to overtreatment. Non-invasive methods with increased specificity and sensitivity are needed to improve diagnosis of significant PCa. We developed and technically validated four individual immunoassays for cathepsin D (CTSD), intercellular adhesion molecule 1 (ICAM1), olfactomedin 4 (OLFM4), and thrombospondin 1 (THBS1). These glycoproteins, previously identified by mass spectrometry using a Pten mouse model, were measured in clinical serum samples for testing the capability of discriminating PCa positive and negative samples. The development yielded 4 individual immunoassays with inter and intra-variability (CV) <15% and linearity on dilution of the analytes. In serum, ex vivo protein stability (<15% loss of analyte) was achieved for a duration of at least 24 hours at room temperature and 2 days at 4°C. The measurement of 359 serum samples from PCa positive (n = 167) and negative (n = 192) patients with elevated PSA (2-10 ng/ml) revealed a significantly improved accuracy (P <0.001) when two of the glycoproteins (CTSD and THBS1) were combined with %fPSA and age (AUC = 0.8109; P <0.0001; 95% CI = 0.7673-0.8545). Conclusively, the use of CTSD and THBS1 together with commonly used parameters for PCa diagnosis such as %fPSA and age has the potential to improve the diagnosis of PCa

    Reliability of transcardiopulmonary thermodilution cardiac output measurement in experimental aortic valve insufficiency.

    No full text
    Monitoring cardiac output (CO) is important to optimize hemodynamic function in critically ill patients. The prevalence of aortic valve insufficiency (AI) is rising in the aging population. However, reliability of CO monitoring techniques in AI is unknown. The aim of this study was to investigate the impact of AI on accuracy, precision, and trending ability of transcardiopulmonary thermodilution-derived COTCPTD in comparison with pulmonary artery catheter thermodilution COPAC.Sixteen anesthetized domestic pigs were subjected to serial simultaneous measurements of COPAC and COTCPTD. In a novel experimental model, AI was induced by retraction of an expanded Dormia basket in the aortic valve annulus. The Dormia basket was delivered via a Judkins catheter guided by substernal epicardial echocardiography. High (HPC), moderate (MPC) and low cardiac preload conditions (LPC) were induced by fluid unloading (20 ml kg-1 blood withdrawal) and loading (subsequent retransfusion of the shed blood and additional infusion of 20 ml kg-1 hydroxyethyl starch). Within each preload condition CO was measured before and after the onset of AI. For statistical analysis, we used a mixed model analysis of variance, Bland-Altman analysis, the percentage error and concordance analysis.Experimental AI had a mean regurgitant volume of 33.6 ± 12.0 ml and regurgitant fraction of 42.9 ± 12.6%. The percentage error between COTCPTD and COPAC during competent valve function and after induction of substantial AI was: HPC 17.7% vs. 20.0%, MPC 20.5% vs. 26.1%, LPC 26.5% vs. 28.1% (pooled data: 22.5% vs. 24.1%). The ability to trend CO-changes induced by fluid loading and unloading did not differ between baseline and AI (concordance rate 95.8% during both conditions).Despite substantial AI, transcardiopulmonary thermodilution reliably measured CO under various cardiac preload conditions with a good ability to trend CO changes in a porcine model. COTCPTD and COPAC were interchangeable in substantial AI

    Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders

    No full text
    Background Vascular endothelial growth factor-A (VEGF-A) is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements. Methods Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center) twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT/CTAD), cannula (butterfly vs. neonatal), type of centrifuge (swing-out vs. fixed-angle), time before and after centrifugation, filling level (completely filled vs. half-filled tubes) and analyzing method (ELISA vs. multiplex bead array). Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model. Results The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes. Conclusion VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples
    corecore