131 research outputs found

    Mach numbers for gases and plasmas in a convergent-divergent cascaded arc

    Get PDF
    For a plasma, flowing through a cascaded arc channel with a varying cross-section, and flowing from a subsonic to a supersonic state, the sonic condition moves downstream and the plasma Mach number at the smallest cross section is less than one, although in case of a transonic isentropic gas flow the sonic condition is found at the smallest cross section. This shift in sonic condition is due to the lack of isentropic behavior of the plasma flow. Sources causing the anisentropy are viscosity, heat and ionization, of which ionization is vital for a plasma. It is found that the plasma Mach number is always lower than the corresponding gas Mach number. A quasi one-dimensional analysis and simulations with a two-dimensional plasma model, which support the analysis, are presented. Β© 1999 American Institute of Physics. Β© 1999 American Institute of Physic

    Ionisation efficiency in a pinched cascaded arc channel

    Get PDF
    In the present study, we will focus on the improvement of the ion density at the arc outlet. Efficiency increases are necessary to obtain effective remote deposition, in which the plasma source and target area are decomposed. Remote deposition is easier to control than non-remote deposition and therefore preferable. The increase in the ionisation outflow will be obtained by creating a nozzle shaped cylindrical arc channel. Simulations were used to obtain the results. The arc plasma expands supersonically into a low pressure vessel. To simulate the existence of the expansion, a Ma=0.9 boundary condition is implemented at the arc outle

    Ionisation efficiency in a pinched cascaded arc channel

    Get PDF
    In the present study, we will focus on the improvement of the ion density at the arc outlet. Efficiency increases are necessary to obtain effective remote deposition, in which the plasma source and target area are decomposed. Remote deposition is easier to control than non-remote deposition and therefore preferable. The increase in the ionisation outflow will be obtained by creating a nozzle shaped cylindrical arc channel. Simulations were used to obtain the results. The arc plasma expands supersonically into a low pressure vessel. To simulate the existence of the expansion, a Ma=0.9 boundary condition is implemented at the arc outle

    Dusty discharges with secondary electron emission

    No full text

    RF discharge in argon with cylindrical dust particles

    No full text
    Kinetic computer simulations of the low pressure RF discharge in argon with cylindrical and spherical dust particles are carried out using PIC/MCC method. The Monte Carlo technique is used to describe electron and ion collisions with neutral atoms, ions, and dust particles. Obtained results show the remarkable influence of the dust particle shape on spatial distributions of RF discharge parameters including the ion density and the dust particle charge. Possible reasons of the influence can be a difference of the collection effective cross-section between spherical and cylindrical dust particles with equal surfaces as well as the balance of charged particles in dusty RF discharges.ΠšΡ–Π½Π΅Ρ‚ΠΈΡ‡Π½Π΅ ΠΊΠΎΠΌΠΏβ€™ΡŽΡ‚Π΅Ρ€Π½Π΅ модСлювання радіочастотного розряду Π² Π°Ρ€Π³ΠΎΠ½Ρ– Π· Ρ†ΠΈΠ»Ρ–Π½Π΄Ρ€ΠΈΡ‡Π½ΠΈΠΌΠΈ Ρ– сфСричними ΠΏΠΈΠ»ΠΎΠ²ΠΈΠΌΠΈ частинками проводилося Π· використанням PIC/MCC ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ. Π’Π΅Ρ…Π½Ρ–ΠΊΠ° ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ використовувалася для опису Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… Ρ– Ρ–ΠΎΠ½Π½ΠΈΡ… Π·Ρ–Ρ‚ΠΊΠ½Π΅Π½ΡŒ Π· Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΈΠΌΠΈ Π°Ρ‚ΠΎΠΌΠ°ΠΌΠΈ Ρ– ΠΏΠΈΠ»ΠΎΠ²ΠΈΠΌΠΈ частинками. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΏΠΎΠΊΠ°Π·ΡƒΡŽΡ‚ΡŒ, Ρ‰ΠΎ Ρ„ΠΎΡ€ΠΌΠ° ΠΏΠΈΠ»ΠΎΠ²ΠΈΡ… частинок ΠΏΠΎΠΌΡ–Ρ‚Π½ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° просторові Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² радіочастотного розряду, Π² Ρ‚ΠΎΠΌΡƒ числі Π½Π° Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»ΠΈ густини Ρ–ΠΎΠ½Ρ–Π² Ρ– заряду ΠΏΠΈΠ»ΠΎΠ²ΠΈΡ… частинок. МоТливими ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ Ρ†ΡŒΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ різниця Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΏΠ΅Ρ€Π΅Ρ‚ΠΈΠ½Ρ–Π² сфСричних Ρ– Ρ†ΠΈΠ»Ρ–Π½Π΄Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠΈΠ»ΠΎΠ²ΠΈΡ… частинок ΠΎΠ΄Π½Π°ΠΊΠΎΠ²ΠΎΡ— ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ–, Π° Ρ‚Π°ΠΊΠΎΠΆ баланс зарядТСних частинок Π² Π·Π°ΠΏΠΎΡ€ΠΎΡˆΠ΅Π½ΠΈΡ… радіочастотних розрядах.ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ радиочастотного разряда Π² Π°Ρ€Π³ΠΎΠ½Π΅ с цилиндричСскими ΠΈ сфСричСскими ΠΏΡ‹Π»Π΅Π²Ρ‹ΠΌΠΈ частицами проводился с использованиСм PIC/MCC ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. Π’Π΅Ρ…Π½ΠΈΠΊΠ° ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ использовалась для описания элСктронных ΠΈ ΠΈΠΎΠ½Π½Ρ‹Ρ… соударСний с Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π°Ρ‚ΠΎΠΌΠ°ΠΌΠΈ ΠΈ ΠΏΡ‹Π»Π΅Π²Ρ‹ΠΌΠΈ частицами. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΠ° ΠΏΡ‹Π»Π΅Π²Ρ‹Ρ… частиц Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ влияСт Π½Π° пространствСнныС распрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² радиочастотного разряда, Π² Ρ‚ΠΎΠΌ числС Π½Π° распрСдСлСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΈ заряда ΠΏΡ‹Π»Π΅Π²Ρ‹Ρ… частиц. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ этого влияния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Π½ΠΈΡ†Π° эффСктивных сСчСний сфСричСских ΠΈ цилиндричСских ΠΏΡ‹Π»Π΅Π²Ρ‹Ρ… частиц с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ, Π° Ρ‚Π°ΠΊΠΆΠ΅ баланс заряТСнных частиц Π² Π·Π°ΠΏΡ‹Π»Π΅Π½Π½Ρ‹Ρ… радиочастотных разрядах

    Extreme hydrogen plasma densities achieved in a linear plasma generator

    Get PDF
    A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5Γ—1020 m-3 electron density, ~2 eV electron and ion temperatures, and 3.5 km/s axial plasma velocity. This gives a 2.6Γ—1024 H+ m-2 s-1 peak ion flux density, which is unprecedented in linear plasma generators. The high efficiency of the source is obtained by the combined action of the magnetic field and an optimized nozzle geometry. This is interpreted as a cross-field return current that leads to power dissipation in the beam just outside the source

    Transport of high fluxes of hydrogen plasma in a linear plasma generator

    Get PDF
    A study was made to quantify the losses during the convective hydrogen plasma transport in the linear plasma generator Pilot-PSI due to volume recombination. A transport efficiency of 35% was achieved at neutral background pressures below ~7 Pa in a magnetic field of 1.2 T. This efficiency decreased to essentially zero at higher pressures. At 1.6 T, the measured downstream plasma density was up to double the upstream density. Apparently plasma pumping and recycling at the target start to play a role under these increased confinement conditions. Feeding the plasma column at this field strength with a net current did not change the downstream density. This indicates that recycling sets the local plasma conditions

    PIC/MC modeling of dusty radio-frequency discharges

    No full text
    • …
    corecore