50 research outputs found

    Mutation of Tyr137 of the universal Escherichia coli fimbrial adhesin FimH relaxes the tyrosine gate prior to mannose binding

    Get PDF
    The most prevalent diseases manifested by Escherichia coli are acute and recurrent bladder infections and chronic inflammatory bowel diseases such as Crohn's disease. E. coli clinical isolates express the FimH adhesin, which consists of a mannose-specific lectin domain connected via a pilin domain to the tip of type 1 pili. Although the isolated FimH lectin domain has affinities in the nanomolar range for all high-mannosidic glycans, differentiation between these glycans is based on their capacity to form predominantly hydrophobic interactions within the tyrosine gate at the entrance to the binding pocket. In this study, novel crystal structures of tyrosine-gate mutants of FimH, ligand-free or in complex with heptyl α - D - O -mannopyranoside or 4-biphenyl α - D - O- mannopyranoside, are combined with quantum-mechanical calculations and molecular-dynamics simulations. In the Y48A FimH crystal structure, a large increase in the dynamics of the alkyl chain of heptyl α - D - O -mannopyranoside attempts to compensate for the absence of the aromatic ring; however, the highly energetic and stringent mannose-binding pocket of wild-type FimH is largely maintained. The Y137A mutation, on the other hand, is the most detrimental to FimH affinity and specificity: (i) in the absence of ligand the FimH C-terminal residue Thr158 intrudes into the mannose-binding pocket and (ii) ethylenediaminetetraacetic acid interacts strongly with Glu50, Thr53 and Asn136, in spite of multiple dialysis and purification steps. Upon mutation, pre-ligand-binding relaxation of the backbone dihedral angles at position 137 in the tyrosine gate and their coupling to Tyr48 via the interiorly located Ile52 form the basis of the loss of affinity of the FimH adhesin in the Y137A mutant

    Hydration sphere structure of architectural molecules: Polyethylene glycol and polyoxymethylene oligomers

    Get PDF
    The computational resources and services used in this work were partially provided by the Centre de Ressources Informatiques (CRI) and by the VSC (Flemisch Supercomputer Center) , funded by the Research Foundation Flanders (FWO) and the Flemisch Government - department EWI and by the supercomputing facilities based in Debrecen, Hungary provided by NIIF of KIFUE. This work was performed with financial support from the Centre National de la Recherche Scientifique (CNRS) , the Ministere de l'Enseignement Superieur et de la Recherche in France and the National Agency for Research (ANR project HICARE 17-CE07-028-01) .J.O. acknowledge financial support of the "Vissza a Tudomanyba" grant of Budapest University of Technology and Economics, of the KU Leuven - Budapest University of Technology and Economics joint research funding (CELSA/19/017) and of project no. 2018-1.2.1-NKP-2018-00005 of the National Research, Development and Innovation Fund of Hungary. B.I. thanks the support of grant 142429 of the National Research, Development and Innovation Office of Hungary. A.M.R. thanks the support of a Stipendium Hungaricum Fellowship, the Tempus dissertation scholarship of the Tempus Public Foundation, and of the Egyptian Government. MJO thanks the Hungarian-American Fulbright Commission for a Fulbright Research Grant in support of her stay in Hungary and the U.S. National Science Foundation grant #CHE-1905214

    How Thioredoxin Dissociates Its Mixed Disulfide

    Get PDF
    The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx

    Histidine versus Cysteine-Bearing Heme-Dependent Halogen Peroxidases: Parallels and Differences for Cl– Oxidation

    No full text
    International audienceThe homodimeric myeloperoxidase (MPO) features a histidine as a proximal ligand and a sulfonium linkage covalently attaching the heme porphyrin ring to the protein. MPO is able to catalyze Cl– oxidation with about the same efficiency as chloroperoxidase at pH 7.0. In this study, we seek to explore the parallels and differences between the histidine and cysteine heme-dependent halogen peroxidases. Transition states, reaction barriers, and relevant thermodynamic properties are calculated on protein models. Together with electronic structure calculations, it gives an overview of the reaction mechanisms and of the factors that determine the selectivity between one- and two-electron paths. Conclusions point to the innate oxidizing nature of MPO with the ester and sulfonium linkages hiking up the reactivity to enable chloride oxidation. The installation of a deprotonated imidazolate as a proximal ligand does not shift the equilibrium from one- to two-electron events without influencing the chemistry of the oxidation reaction

    Enzymatic Catalysis: The Emerging Role of Conceptual Density Functional Theory

    Full text link
    corecore