42 research outputs found

    Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy

    Get PDF
    Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation canbe restored by exon skipping in both patient cardiomyocytes invitro and mouse heart invivo, indicating RNA-based strategies as a potential treatment option for DCM

    Functional Comparison of Induced Pluripotent Stem Cell- and Blood-Derived GPIIbIIIa Deficient Platelets

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) represent a versatile tool to model genetic diseases and are a potential source for cell transfusion therapies. However, it remains elusive to which extent patient-specific hiPSC-derived cells functionally resemble their native counterparts. Here, we generated a hiPSC model of the primary platelet disease Glanzmann thrombasthenia (GT), characterized by dysfunction of the integrin receptor GPIIbIIIa, and compared side-by-side healthy and diseased hiPSC-derived platelets with peripheral blood platelets. Both GT-hiPSC-derived platelets and their peripheral blood equivalents showed absence of membrane expression of GPIIbIIIa, a reduction of PAC-1 binding, surface spreading and adherence to fibrinogen. We demonstrated that GT-hiPSC-derived platelets recapitulate molecular and functional aspects of the disease and show comparable behavior to their native counterparts encouraging the further use of hiPSC-based disease models as well as the transition towards a clinical application

    Interplay of cell-cell contacts and RhoA/MRTF-A signaling regulates cardiomyocyte identity.

    Get PDF
    Cell-cell and cell-matrix interactions guide organ development and homeostasis by controlling lineage specification and maintenance, but the underlying molecular principles are largely unknown. Here, we show that in human developing cardiomyocytes cell-cell contacts at the intercalated disk connect to remodeling of the actin cytoskeleton by regulating the RhoA-ROCK signaling to maintain an active MRTF/SRF transcriptional program essential for cardiomyocyte identity. Genetic perturbation of this mechanosensory pathway activates an ectopic fat gene program during cardiomyocyte differentiation, which ultimately primes the cells to switch to the brown/beige adipocyte lineage in response to adipogenesis-inducing signals. We also demonstrate by in vivo fate mapping and clonal analysis of cardiac progenitors that cardiac fat and a subset of cardiac muscle arise from a common precursor expressing Isl1 and Wt1 during heart development, suggesting related mechanisms of determination between the two lineages

    Innovation During COVID-19: Improving Addiction Treatment Access

    No full text

    In search of the next super models

    No full text
    The advent of pluripotent stem cell biology and facile genetic manipulation via CRISPR technology has ushered in a new era of human disease models for drug discovery and development. While these precision “super models” hold great promise for tailoring personalized therapy, their full potential and in vivo validation have remained elusive

    Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    No full text

    Hyoid morphology and movements relative to abducting forces feeding in Astatotilapia-elegans (Teleostei, Cichlidae)

    No full text
    In fishes, the abducting hyoid bars push the suspensoria outwards. This force transmission is generally assumed to be important during fast suction feeding (strenuous activity). In Astatotilapia elegans the hyoid symphysis can best be modelled as an oblique hinge. The relevance of this hinge morphology on the force transmission has been studied by means of a three-dimensional (3D) model simulating the displacements of the hyoid-suspensorial system. It appears that the transmission force factor increases throughout feeding in the case of the hinge model. Reduction of the hyoid symphysis to a point articulation (as was done formerly in attempts to quantify the transmission by means of planar models) suggests an unfavourable decline of the transmission force to zero during maximal mouth expansion. The angle between the hinge axis of the symphysis and the longitudinal axis of the hyoid bar is 45-degrees. Such a configuration allows for a maximal increase in the volume of the buccal cavity for suction. This functional aspect, together with the apparent maximization of the force transmission during feeding, suggests that constructional and neuromotoric factors have been improved during the evolutionary development of the hyoid-suspensorial system

    In the Eye of the Storm: Immune-mediated Toxicities Associated With CAR-T Cell Therapy

    No full text
    The success of chimeric antigen receptor (CAR)-T cell therapy with impressive response rates in hematologic malignancies but also promising data in solid tumors came along with the cognition of unexpected, potentially life-threatening immune-mediated toxicities, namely the cytokine release syndrome (CRS) and neurotoxicity recently referred to as immune effector cell-associated neurotoxicity syndrome (ICANS). These toxicities require urgent diagnostic and therapeutic interventions and targeted modulation of key cytokine pathways represents the mainstay of CRS treatment. However, as the underlying mechanisms of ICANS are not well understood, treatment options remain limited and further investigation is warranted. Importantly, after the recent market approval of 2 CAR-T cell constructs, the application of CAR-T cells will expand to nonacademic centers with limited experience in the management of CAR-T cell-associated toxicities. Here, we review the current evidence of CRS and ICANS pathophysiology, diagnostics, and treatment
    corecore