445 research outputs found

    Some Remarks on the Matching Polynomial and Its Zeros

    Get PDF
    The matching polynomial (also called reference and acyclic polynomial) was discovered in chemistry, physics and mathematics at least six times. We demonstrate that the matching polynomial of a bipartite graph coincides with the rook polynomial of a certain board. The basic notions of rook theory17 are described. It is also shown that the matching polynomial cannot always discriminate between planar isospectral molecules

    Some Remarks on the Matching Polynomial and Its Zeros

    Get PDF
    The matching polynomial (also called reference and acyclic polynomial) was discovered in chemistry, physics and mathematics at least six times. We demonstrate that the matching polynomial of a bipartite graph coincides with the rook polynomial of a certain board. The basic notions of rook theory17 are described. It is also shown that the matching polynomial cannot always discriminate between planar isospectral molecules

    A simple encoding of a quantum circuit amplitude as a matrix permanent

    Full text link
    A simple construction is presented which allows computing the transition amplitude of a quantum circuit to be encoded as computing the permanent of a matrix which is of size proportional to the number of quantum gates in the circuit. This opens up some interesting classical monte-carlo algorithms for approximating quantum circuits.Comment: 6 figure

    A general algorithm for manipulating non-linear and linear entanglement witnesses by using exact convex optimization

    Full text link
    A generic algorithm is developed to reduce the problem of obtaining linear and nonlinear entanglement witnesses of a given quantum system, to convex optimization problem. This approach is completely general and can be applied for the entanglement detection of any N-partite quantum system. For this purpose, a map from convex space of separable density matrices to a convex region called feasible region is defined, where by using exact convex optimization method, the linear entanglement witnesses can be obtained from polygonal shape feasible regions, while for curved shape feasible regions, envelope of the family of linear entanglement witnesses can be considered as nonlinear entanglement witnesses. This method proposes a new methodological framework within which most of previous EWs can be studied. To conclude and in order to demonstrate the capability of the proposed approach, besides providing some nonlinear witnesses for entanglement detection of density matrices in unextendible product bases, W-states, and GHZ with W-states, some further examples of three qubits systems and their classification and entanglement detection are included. Also it is explained how one can manipulate most of the non-decomposable linear and nonlinear three qubits entanglement witnesses appearing in some of the papers published by us and other authors, by the method proposed in this paper. Keywords: non-linear and linear entanglement witnesses, convex optimization. PACS number(s): 03.67.Mn, 03.65.UdComment: 37 page

    Pretty good state transfer in qubit chains-The Heisenberg Hamiltonian

    Get PDF
    Pretty good state transfer in networks of qubits occurs when a continuous-time quantum walk allows the transmission of a qubit state from one node of the network to another, with fidelity arbitrarily close to 1. We prove that in a Heisenberg chain with n qubits, there is pretty good state transfer between the nodes at the jth and (n − j + 1)th positions if n is a power of 2. Moreover, this condition is also necessary for j = 1. We obtain this result by applying a theorem due to Kronecker about Diophantine approximations, together with techniques from algebraic graph theory

    Unitary designs and codes

    Full text link
    A unitary design is a collection of unitary matrices that approximate the entire unitary group, much like a spherical design approximates the entire unit sphere. In this paper, we use irreducible representations of the unitary group to find a general lower bound on the size of a unitary t-design in U(d), for any d and t. We also introduce the notion of a unitary code - a subset of U(d) in which the trace inner product of any pair of matrices is restricted to only a small number of distinct values - and give an upper bound for the size of a code of degree s in U(d) for any d and s. These bounds can be strengthened when the particular inner product values that occur in the code or design are known. Finally, we describe some constructions of designs: we give an upper bound on the size of the smallest weighted unitary t-design in U(d), and we catalogue some t-designs that arise from finite groups.Comment: 25 pages, no figure

    On almost distance-regular graphs

    Get PDF
    Distance-regular graphs are a key concept in Algebraic Combinatorics and have given rise to several generalizations, such as association schemes. Motivated by spectral and other algebraic characterizations of distance-regular graphs, we study `almost distance-regular graphs'. We use this name informally for graphs that share some regularity properties that are related to distance in the graph. For example, a known characterization of a distance-regular graph is the invariance of the number of walks of given length between vertices at a given distance, while a graph is called walk-regular if the number of closed walks of given length rooted at any given vertex is a constant. One of the concepts studied here is a generalization of both distance-regularity and walk-regularity called mm-walk-regularity. Another studied concept is that of mm-partial distance-regularity or, informally, distance-regularity up to distance mm. Using eigenvalues of graphs and the predistance polynomials, we discuss and relate these and other concepts of almost distance-regularity, such as their common generalization of (,m)(\ell,m)-walk-regularity. We introduce the concepts of punctual distance-regularity and punctual walk-regularity as a fundament upon which almost distance-regular graphs are built. We provide examples that are mostly taken from the Foster census, a collection of symmetric cubic graphs. Two problems are posed that are related to the question of when almost distance-regular becomes whole distance-regular. We also give several characterizations of punctually distance-regular graphs that are generalizations of the spectral excess theorem
    corecore