122 research outputs found

    Antimicrobial photodynamic therapy mediated by methylene blue in surfactant vehicle on periodontopathogens

    Get PDF
    Background: Periodontal disease (PD) is a chronic inflammatory disease caused by the presence of microbial biofilm. The aim of this study was to evaluate antimicrobial effect of antimicrobial photodynamic therapy (A-PDT) mediated by methylene blue (MB) in monomer form on A. actinomycetemcomitans and P. gingivalis. Methods: A. actinomycetemcomitans ATCC 29523 and P. gingivalis ATCC 33577 were cultured on anaerobic jars at 37 °C for 48 h, and we tested APDT in the presence of 0.25% sodium dodecyl sulfate (SDS) in phosphate-buffered saline (PBS) or in PBS alone. APDT was carried out with 100 μM MB under laser radiation (PhotolaseIII, DMC, Brazil) at ʎ =660 nm and parameters as following (P =100 mW; I =250 mW/cm2, and doses of 15, 45 and 75 J/cm2). Results: Following A-PDT, PBS groups of A. actinomycetemcomitans presented 4 Logs of microbial death after 5 min irradiation. However, there was no bacterial reduction in SDS groups. On the other hand, P. gingivalis was sensitive to APDT in the presence of 0.25% SDS with 2 logs reduction from dark toxicity. Conclusion: The presence of 0.25% SDS can lead to different responses depending on the different microbial species. © 2020 Elsevier B.V

    Parameters for antimicrobial photodynamic therapy on periodontal pocket-Randomized clinical trial.

    Get PDF
    BACKGROUND: Antimicrobial photodynamic therapy (aPDT) has been investigated as an adjunctive to periodontal treatment but the dosimetry parameters adopted have discrepancies and represent a challenge to measure efficacy. There is a need to understand the clinical parameters required to obtain antimicrobial effects by using aPDT in periodontal pockets. The aim of this study was to investigate parameters relating to the antimicrobial effects of photodynamic therapy in periodontal pockets. MATERIAL AND METHODS: This randomized controlled clinical trial included 30 patients with chronic periodontitis. Three incisors from each patient were selected and randomized for the experimental procedures. Microbiological evaluations were performed to quantify microorganisms before and after treatments and spectroscopy was used to identify methylene blue in the pocket. A laser source with emission of radiation at wavelength of ʎ = 660 nm and output radiant power of 100 mW was used for 1, 3 and 5 min. One hundred μM methylene blue was used in aqueous solution and on surfactant vehicle. RESULTS: The results demonstrated the absence of any antimicrobial effect with aqueous methylene blue-mediated PDT. On the other hand, methylene blue in the surfactant vehicle produced microbial reduction in the group irradiated for 5 min (p < 0.05). Spectroscopy showed that surfactant vehicle decreased the dimer peak signal at 610 nm. CONCLUSION: Within the parameters used in this study, PDT mediated by methylene blue in a surfactant vehicle reached significant microbial reduction levels with 5 min of irradiation. The clinical use of PDT may be limited by factors that reduce the antimicrobial effect. Forms of irradiation and stability of the photosensitizers play an important role in clinical aPDT

    Publishing data to support the fight against human vector-borne diseases

    Get PDF
    Vector-borne diseases are responsible for more than 17% of human cases of infectious diseases. In most situations, effective control of debilitating and deadly vector-bone diseases (VBDs), such as malaria, dengue, chikungunya, yellow fever, Zika and Chagas requires up-to-date, robust and comprehensive information on the presence, diversity, ecology, bionomics and geographic spread of the organisms that carry and transmit the infectious agents. Huge gaps exist in the information related to these vectors, creating an essential need for campaigns to mobilise and share data. The publication of data papers is an effective tool for overcoming this challenge. These peer-reviewed articles provide scholarly credit for researchers whose vital work of assembling and publishing well-described, properly-formatted datasets often fails to receive appropriate recognition. To address this, GigaScience 's sister journal GigaByte partnered with the Global Biodiversity Information Facility (GBIF) to publish a series of data papers, with support from the Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organisation (WHO). Here we outline the initial results of this targeted approach to sharing data and describe its importance for controlling VBDs and improving public health
    corecore