206 research outputs found

    Population dynamics, life stage and ecological modeling in Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae)

    Get PDF
    In this study we investigated the population dynamics of Chrysomya albiceps (Wiedemann) with laboratory experiments, employing survival analysis and stage structure mathematical models, emphasizing survival among life stages. The study also assessed the theoretical influence of density dependence and cannibalism during immature stages, on the population dynamics of the species. The survival curves were similar, indicating that populations of C. albiceps exhibit the same pattern of survival among life stages. A strong nonlinear trend was observed, suggesting density dependence, acting during the first life stages of C. albiceps. The time-series simulations produced chaotic oscillations for all life stages, and the cannibalism did not produce qualitative changes in the dynamic behavior. The bifurcation analysis shows that for low values for survival, the population reaches a stable equilibrium, but the cannibalism results in chaotic oscillations practically over all the parametric space. The implications of the patterns of dynamic behavior observed are discussed.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)WACGCNPqFAPES

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics

    Get PDF
    Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions

    Participation in biocultural diversity conservation : insights from five Amazonian examples

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MThe past three decades have seen the emergence of myriads of initiatives focused on conserving, revitalizing, and maintaining Indigenous and Local Knowledge (ILK) as part of biocultural approaches to conservation. However, the extent to which these efforts have been participatory has been often overlooked. In this chapter, we focus on five prominent ILK conservation initiatives in the Amazon Basin to examine the participation of Indigenous Peoples and Local Communities (IPLCs) in ILK conservation. Our review illustrates several examples of ILK conservation initiatives offering substantial opportunities for meaningful IPLC participation over the long term. Overall, our case studies suggest that the development of robust and inclusive decision-making processes is essential to optimize IPLC participation in ILK conservation, thereby increasing the legitimacy of these initiatives. Our review is not an exhaustive account of the breadth and depth of all initiatives promoting participatory biocultural conservation in this region, but it illustrates that there are many strategies that can help foster IPLC engagement and lead the participatory turn in biocultural conservation

    Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    Get PDF
    BACKGROUND: PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson\u27s disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. METHODS AND FINDINGS: Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. CONCLUSIONS: Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death
    corecore