2,196 research outputs found

    The drift field model applied to the lithium-containing silicon solar cell

    Get PDF
    The drift field model used by Wolf to calculate the short-circuit current was extended to permit calculations of the open-circuit voltage and the maximum power under conditions of illumination of either tungsten (2800 C) source or AMO sunlight. Voltages were calculated using an expression for the drift field diode saturation current derived here. The model, applied to the oxygen rich (C-13 group) lithium solar cells, was used to calculate the pre-and post-electron bombardment trends for lithium gradients in the range of 10 to the 18th power to 10 to the 19th power Li/cm to the 4th power. Published experimental data characterizing these cells were used to tailor the model. The calculated trends are in reasonable agreement with the empirical data of Faith. Diffusion length degradation and carrier removal effects were sufficient to predict the cell performance up to 3 x 10 to the 14th power e/sq cm. Beyond this fluence it was necessary to include drift field removal effects

    Low-high junction theory applied to solar cells

    Get PDF
    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined

    Effects of high doping levels silicon solar cell performance

    Get PDF
    The significance of the heavy doping effects (HDE) on the open-circuit voltage of silicon solar cells is assessed. Voltage calculations based on diffusion theory are modified to include the first order features of the HDE. Comparisions of the open-circuit voltage measured for cells of various base resistivities are made with those calculated using the diffusion model with and without the HDE. Results indicate that the observed variation of voltage with base resistivity is predicted by these effects. A maximum efficiency of 19% (AM0) and a voltage of 0.7 volts are calculated for 0.1 omega-cm cells assuming an optimum diffused layer impurity profile

    Voltage controlling mechanisms in low resistivity silicon solar cells: A unified approach

    Get PDF
    An experimental technique capable of resolving the dark saturation current into its base and emitter components is used as the basis of an analysis in which the voltage limiting mechanisms were determined for a variety of high voltage, low resistivity silicon solar cells. The cells studied include the University of Florida hi-low emitter cell, the NASA and the COMSAT multi-step diffused cells, the Spire Corporation ion-implanted emitter cell, and the University of New South Wales MINMIS and MINP cells. The results proved to be, in general, at variance with prior expectations. Most surprising was the finding that the MINP and the MINMIS voltage improvements are due, to a considerable extent, to a previously unrecognized optimization of the base component of the saturation current. This result is substantiated by an independent analysis of the material used to fabricate these devices

    Experimental investigation of the excess charge and time constant of minority carriers in the thin diffused layer of 0.1 ohm-cm silicon solar cells

    Get PDF
    An experimental method is presented that can be used to interpret the relative roles of bandgap narrowing and recombination processes in the diffused layer. This method involves measuring the device time constant by open-circuit voltage decay and the base region diffusion length by X-ray excitation. A unique illuminated diode method is used to obtain the diode saturation current. These data are interpreted using a simple model to determine individually the minority carrier lifetime and the excess charge. These parameters are then used to infer the relative importance of bandgap narrowing and recombination processes in the diffused layer

    Are Loans Cheaper when Tomorrow seems Further ?

    Get PDF

    Pseudo-Atrioventricular Block due to Premature Systoles with Concealed Conduction

    Get PDF
    Two patients are presented with EKC findings suggesting pseudo AV block Mobitz type II. Pseudo AV block was related to the presence of premature junctional or ventricular beats with concealed conduction. Response to therapy confirmed the initial diagnosis of pseudo AV block. Awareness of clinical conditions simulating type II second degree AV block is important because of the therapeutic implications and prognosis

    Optical properties of light-hole excitons in GaN epilayers

    Get PDF
    Optical properties of light-hole free exciton (FX B) in GaN epilayers were investigated by using near-resonance photoluminescence (PL) and time-resolved PL techniques. In contrast to the case of off-resonance PL where only heavy-hole free excitons (FX A) have strong response, FX B band can be well resolved in the near-resonance PL spectra. The variable-temperature near-resonance PL spectra show that the linewidth of FX B broadens faster than the FX A with increasing temperature. Moreover, the luminescence lifetime of FX B is found to be shorter than that of FX A. © 2010 American Institute of Physics.published_or_final_versio

    Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model

    Full text link
    We investigate here the ability of a Green-Naghdi model to reproduce strongly nonlinear and dispersive wave propagation. We test in particular the behavior of the new hybrid finite-volume and finite-difference splitting approach recently developed by the authors and collaborators on the challenging benchmark of waves propagating over a submerged bar. Such a configuration requires a model with very good dispersive properties, because of the high-order harmonics generated by topography-induced nonlinear interactions. We thus depart from the aforementioned work and choose to use a new Green-Naghdi system with improved frequency dispersion characteristics. The absence of dry areas also allows us to improve the treatment of the hyperbolic part of the equations. This leads to very satisfying results for the demanding benchmarks under consideration

    Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors

    Full text link
    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom electronics, currently in use in the ATLAS inner detector, with numerous potential applications. The instrument has demonstrated ~0.3% mixture precision for C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and high flow versions of the instrument have demonstrated flow resolutions of +/- 2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow velocities up to 15 ms-1; the latter flow approaching that expected in the vapour return of the thermosiphon fluorocarbon coolant recirculator being built for the ATLAS silicon tracker.Comment: Paper submitted to TWEPP2012; Topical Workshop on Electronics for Particle Physics, Oxford, UK, September 17-21, 2012. KEYWORDS: Sonar; Saturated fluorocarbons; Flowmetry; Sound velocity, Gas mixture analysis. 8 pages, 7 figure
    corecore