213 research outputs found

    Laser-Assisted Cryosurgery in ex vivo Mice Hepatic Tissue: Viability Assays Using Green Fluorescent Protein

    Get PDF
    An experimental investigation is carried out to develop a novel approach to cryosurgery, where laser heating counteracts tissue freezing to better confine damage to the targeted cancerous tissue within a lethal low-temperature isothermal boundary—an approach we refer to as laser-assisted cryosurgery (LAC). The advantage of this procedure relative to conventional cryosurgery assisted with urethral warmers or cryoheaters is that laser heating provides volumetric rather than superficial heating, which leads to deeper penetration, more homogeneous tissue protection and better demarcation of the destructive freezing effect to a well-defined targeted volume. Tissue viability assays are performed using green fluorescence protein (GFP) as a viability marker and correlated with temperature history after performing LAC procedures on ex vivo mice hepatic tissue. The limit for cell denaturation at the irradiated surface predicted by GFP analysis is further confirmed using reverse transcription polymerase chain reaction (RT-PCR). In addition, the correlation between GFP fluorescence and cell viability and loss of GFP fluorescence in non-viable cells has been tested and validated by histological analysis using a standard cell viability measuring method (hematoxylin and eosin staining). Analysis of our experimental measurements show that reproducible thermal gradients (of 236 °C/cm) and predictable tissue necrosis can be reliably produced by LAC without exceeding temperature thresholds for cell denaturation (of Tsurf ≈ 48 °C) beyond preset tissue boundaries (with resolution of 0.1 °C/mm). The results have shown the feasibility of controlling temperatures at specified tissue locations to prevent hyperthermal or freezing damage

    Decarbonising the transport and energy sectors: Technical feasibility and socioeconomic impacts in Costa Rica

    Get PDF
    Compliance with the Paris Agreement requires the transformation of national economies to meet net-zero carbon dioxide emissions by mid-century. To accomplish this, countries need to define long-term decarbonisation strategies with near- and mid-term actions to determine their ideal future scenario while maximizing socioeconomic benefits. This paper describes the process followed to support the creation of the decarbonisation pathway for the transport and energy sectors presented in Costa Rica's National Decarbonisation Plan. We discuss in detail the technological pathway of a deep-decarbonisation future that supports reaching net-zero emissions by 2050. Compared to a business-as-usual (BAU) scenario, our results show that the decarbonisation pathway can lead to emissions' reduction of 87% in the transport and energy sectors by 2050. Energy efficiency, the adoption of electromobility, modal-shift towards public transport and active mobility, as well as reduced demand due to digitalisation and teleworking, are found to be key drivers towards the deep-decarbonisation. These measures combined enable a 25% reduction of primary energy production by 2050. The results highlight that the decarbonisation scenario requires installing 4.4 GW more of renewable power plants by 2050, compared to the BAU scenario (80%). We also show that additional investments for the deep-decarbonisation are compensated with the reduced operating cost. Crucially, we found that the National Decarbonisation Plan results in a lower total discounted cost of about 35% of current Costa Rica's GDP, indicating that a deep decarbonisation is technically feasible and is coupled to socioeconomic benefits

    IL-17A/F-Signaling Does Not Contribute to the Initial Phase of Mucosal Inflammation Triggered by S. Typhimurium

    Get PDF
    Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium) causes diarrhea and acute inflammation of the intestinal mucosa. The pro-inflammatory cytokines IL-17A and IL-17F are strongly induced in the infected mucosa but their contribution in driving the tissue inflammation is not understood. We have used the streptomycin mouse model to analyze the role of IL-17A and IL-17F and their cognate receptor IL-17RA in S. Typhimurium enterocolitis. Neutralization of IL-17A and IL-17F did not affect mucosal inflammation triggered by infection or spread of S. Typhimurium to systemic sites by 48 h p.i. Similarly, Il17ra−/− mice did not display any reduction in infection or inflammation by 12 h p.i. The same results were obtained using S. Typhimurium variants infecting via the TTSS1 type III secretion system, the TTSS1 effector SipA or the TTSS1 effector SopE. Moreover, the expression pattern of 45 genes encoding chemokines/cytokines (including CXCL1, CXCL2, IL-17A, IL-17F, IL-1α, IL-1β, IFNγ, CXCL-10, CXCL-9, IL-6, CCL3, CCL4) and antibacterial molecules was not affected by Il17ra deficiency by 12 h p.i. Thus, in spite of the strong increase in Il17a/Il17f mRNA in the infected mucosa, IL-17RA signaling seems to be dispensable for eliciting the acute disease. Future work will have to address whether this is attributable to redundancy in the cytokine signaling network

    An electrochromic ionic liquid: design, characterisation and performance in a solid state platform

    Get PDF
    This work describes the synthesis and characteristics of a novel electrochromic ionic liquid (IL) based on a phosphonium core tethered to a viologen moiety. When integrated into a solid-state electrochromic platform, the viologen modified IL behaved as both the electrolyte and the electrochromic material. Platform fabrication was achieved through in situ photo-polymerisation and encapsulation of this novel IL within a hybrid sol-gel. Important parameters of the platform performance, including its coloration efficiency, switching kinetics and optical properties were characterised using UV/Vis spectroscopy and cyclic voltammetry in tandem. The electrochromic platform exhibits a coloration efficiency of 10.72 cm2C-1, and a varied optical output as a function of the incident current. Despite the rather viscous nature of the material, the platform exhibited approximately two orders of magnitude faster switching kinetics (221 seconds to reach 95 % absorbance) when compared to previously reported electrochromic ILs (18,000 seconds)

    Chromosome Tips Damaged in Anaphase Inhibit Cytokinesis

    Get PDF
    Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres) in anaphase of Potorous tridactylis cells (PtK2) inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit

    Stromal IFN-γR-Signaling Modulates Goblet Cell Function During Salmonella Typhimurium Infection

    Get PDF
    Enteropathogenic bacteria are a frequent cause of diarrhea worldwide. The mucosal defenses against infection are not completely understood. We have used the streptomycin mouse model for Salmonella Typhimurium diarrhea to analyze the role of interferon gamma receptor (IFN-γR)-signaling in mucosal defense. IFN-γ is known to contribute to acute S. Typhimurium diarrhea. We have compared the acute mucosal inflammation in IFN-γR-/- mice and wild type animals. IFN-γR-/- mice harbored increased pathogen loads in the mucosal epithelium and the lamina propria. Surprisingly, the epithelium of the IFN-γR-/- mice did not show the dramatic “loss” of mucus-filled goblet cell vacuoles, a hallmark of the wild type mucosal infection. Using bone marrow chimeric mice we established that IFN-γR-signaling in stromal cells (e.g. goblet cells, enterocytes) controlled mucus excretion/vacuole loss by goblet cells. In contrast, IFN-γR-signaling in bone marrow-derived cells (e.g. macrophages, DCs, PMNs) was required for restricting pathogen growth in the gut tissue. Thus IFN-γR-signaling influences different mucosal responses to infection, including not only pathogen restriction in the lamina propria, but, as shown here, also goblet cell function

    Restructuring of Pancreatic Islets and Insulin Secretion in a Postnatal Critical Window

    Get PDF
    Function and structure of adult pancreatic islets are determined by early postnatal development, which in rats corresponds to the first month of life. We analyzed changes in blood glucose and hormones during this stage and their association with morphological and functional changes of alpha and beta cell populations during this period. At day 20 (d20), insulin and glucose plasma levels were two- and six-fold higher, respectively, as compared to d6. Interestingly, this period is characterized by physiological hyperglycemia and hyperinsulinemia, where peripheral insulin resistance and a high plasmatic concentration of glucagon are also observed. These functional changes were paralleled by reorganization of islet structure, cell mass and aggregate size of alpha and beta cells. Cultured beta cells from d20 secreted the same amount of insulin in 15.6 mM than in 5.6 mM glucose (basal conditions), and were characterized by a high basal insulin secretion. However, beta cells from d28 were already glucose sensitive. Understanding and establishing morphophysiological relationships in the developing endocrine pancreas may explain how events in early life are important in determining adult islet physiology and metabolism

    Objective comparison of particle tracking methods

    Get PDF
    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers

    Th17 Cytokines and the Gut Mucosal Barrier

    Get PDF
    Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, γδ T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections
    corecore