83 research outputs found
Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation
The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step
Effect of friction and clearance on kinematics and contact mechanics of dual mobility hip implant.
The dual mobility hip implant has been introduced recently and increasingly used in total hip replacement to maintain the stability and reduce the risk of post-surgery dislocation. However, the kinematics and contact mechanisms of dual mobility hip implants have not been investigated in detail in the literature. Therefore, finite element method was adopted in this study to investigate dynamics and contact mechanics of a typical metal-on-polymer dual mobility hip implant under different friction coefficient ratios between the inner and the outer articulations and clearances/interferences between the ultra-high-molecular-weight polyethylene liner and the metal back shell. A critical ratio of friction coefficients between the two pairs of contact interfaces was found to mainly determine the rotating surfaces. Furthermore, an initial clearance between the liner and the back shell facilitated the rotation of the liner while an initial interference prevented such a motion at the outer articulating interface. In addition, the contact area and the sliding distance at the outer articulating surface were markedly greater than those at the inner cup-head interface, potentially leading to extensive wear at the outer surface of the liner
The influence of simulator input conditions on the wear of total knee replacements: an experimental and computational study
Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation
The effect of insert conformity and material on total knee replacement wear
The mean average life is increasing; therefore, there is a need to increase the lifetime of the prostheses. To fulfil this requirement, new prosthetic designs and materials are being introduced. Two of the design parameters that may affect wear of total knee replacements, and hence the expected lifetime, are the insert conformity and material. Computational models have been used extensively for wear prediction and optimisation of artificial knee designs. The objective of the present study was to use a previously validated non-dimensional wear coefficient-based computational wear model to investigate the effect of insert conformity and material on the predicted wear in total knee replacements. Four different inserts (curved, lipped, partial flat and custom flat), with different conformity levels, were tested against the same femoral and under two different kinematic inputs (intermediate and high), with different levels of cross-shear. The insert bearing materials were either conventional or moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE). Wear predictions were validated against the experimental data from Leeds knee simulation tests. The predicted wear rates for the curved insert (most conformed) were more than three times those for the flat insert (least conformed). In addition, the computationally predicted average volumetric wear rates for moderately cross-linked UHMWPE bearings were less than half of their corresponding conventional UHMWPE bearings. Moreover, the wear of the moderately cross-linked UHMWPE was shown to be less dependent on the degree of cross-shear, compared to conventional UHMWPE. These results along with supporting experimental studies provide insight into the design variables, which may reduce wear in knee replacements
CONTRIBUTION A L'ETUDE DES POTENTIELS OSCILLATOIRES CHEZ LE CHIEN
L'enregistrement des potentiels oscillatoires (PO) permet d'évaluer des aspects de la fonction rétinienne qui ne sont pas explorés par l'électrorétinogramme. Leur utilité est démontrée chez l'homme dans le dépistage et le suivi de la rétinopathie diabétique. Nous avons cherché à établir un protocole simple d'enregistrement des PO chez le chien. Les PO ont été enregistrés sur des chiens cliniquement sains après 5 et 30 minutes d'adaptation à l'obscurité. Leurs amplitudes, latences et amplitudes sommées ont été notées et comparées. Après 30 minutes d'obscurité, cinq ondes (nommées OP1 à OP5) sont visibles ayant pour latences moyennes 10.36, 16.50, 23.68, 31.16 et 40 ms, et dont les amplitudes s'échelonnent de 8.22pV à 19.85pV. Les principaux changement observés lors de la phase d'adaptation à l'obscurité sont un développement progressif de OP 1 et OP5 ainsi qu'une réponse incomplète faisant suite au premier flash. Ceci doit amener à ne pas prendre en compte la réponse de la rétine au premier flash. Les latences et amplitudes sommées sont proposés pour servir à l'interprétation des PO du fait de leurs plus faibles variations inter-individuelles.MAISONS-ALFORT-Ecole Vétérin (940462302) / SudocSudocFranceF
Could passive knee laxity be related to active gait mechanics? An exploratory computational biomechanical study using probabilistic methods
Improving total knee replacement (TKR) requires better understanding of the many factors influencing clinical outcomes. Recently, probabilistic studies have investigated the influence of variability for individual TKR activities. This study demonstrates conceptually how probabilistic studies might further provide a framework to explore relationships not just within but between multiple different activities, e.g. intra-operative passive laxity drawer loading and post-operative active gait. Two implants were compared using simulated ISO-gait and passive laxity loading, with factors including mal-positioning and soft-tissue constraint varied using Monte-Carlo analysis. The results illustrate that correlations between different activities can be quantified; this demonstration study suggests further research is justified (with detailed clinically representative models) to explore the relationship between passive and active mechanics for specific in vivo conditions. Probabilistics is a key enabling methodology for achieving this goal. In future, exploring correlations between different activities may facilitate a better holistic understanding of TKR function
- …