31 research outputs found

    Information

    Get PDF

    Renewing the Budget: Recommendations for Louisiana’s Renewable Energy Tax Credit

    Get PDF
    Long-term operation of energy systems is a complex optimization task. Often, such long-term operational optimizations are solved by direct decomposing the problem into smaller subproblems. However, direct decomposition is not possible for problems with time-coupling constraints and variables. Such time-coupling is common in energy systems, e.g., due to peak power prices and (seasonal) energy storage. To efficiently solve coupled long-term operational optimization problems, we propose a time-series decomposition method. The proposed method calculates lower and upper bounds to obtain a feasible solution of the original problem with known quality. We compute lower bounds by the Branch-and-Cut algorithm. For the upper bound, we decompose complicating constraints and variables into smaller subproblems. The solution of these subproblems are recombined to obtain a feasible solution for the long-term operational optimization. To tighten the upper bound, we iteratively decrease the number of subproblems. In a case study for an industrial energy system, we show that the proposed time-series decomposition method converges fast, outperforming a commercial state-of-the-art solver

    Research trends in combinatorial optimization

    Get PDF
    Acknowledgments This work has been partially funded by the Spanish Ministry of Science, Innovation, and Universities through the project COGDRIVE (DPI2017-86915-C3-3-R). In this context, we would also like to thank the Karlsruhe Institute of Technology. Open access funding enabled and organized by Projekt DEAL.Peer reviewedPublisher PD

    Proportional Apportionment for Connected Coalitions

    No full text

    Information

    Get PDF
    corecore