5,095 research outputs found

    Making it work: identifying the challenges of collaborative international research

    Get PDF
    In this article, we explore the challenges – and benefits – of conducting collaborative research on an international scale. The authors – from Australia, Canada, and New Zealand – draw upon their experiences in designing and conducting a three-country study. The growing pressures on scholars to work in collaborative research teams are described, and key findings and reflections are presented. It is claimed that such work is a highly complex and demanding extension to the academic’s role. The authors conclude that, despite the somewhat negative sense that this reflection may convey, the synergies gained and the valuable comparative learning that took place make overcoming these challenges a worthwhile process. The experiences as outlined in this paper suggest that developing understandings of the challenges inherent in undertaking international collaborative research might well be a required component of the professional development opportunities afforded to new scholars

    Landau quantization effects in the charge-density-wave system (Per)2M_2M(mnt)2_2 (where M=M=Au and Pt)

    Full text link
    A finite transfer integral tat_a orthogonal to the conducting chains of a highly one-dimensional metal gives rise to empty and filled bands that simulate an indirect-gap semiconductor upon formation of a commensurate charge-density-wave (CDW). In contrast to semiconductors such as Ge and Si with bandgaps ∼1\sim 1 eV, the CDW system possesses an indirect gap with a greatly reduced energy scale, enabling moderate laboratory magnetic fields to have a major effect. The consequent variation of the thermodynamic gap with magnetic field due to Zeeman splitting and Landau quantization enables the electronic bandstructure parameters (transfer integrals, Fermi velocity) to be determined accurately. These parameters reveal the orbital quantization limit to be reached at ∼20\sim 20 T in (Per)2M_2M(mnt)2_2 salts, making them highly unlikely candidates for a recently-proposed cascade of field-induced charge-density wave states

    Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory

    Get PDF
    We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing a statistical mechanics of fluids approach, namely density functional theory (DFT) together with fundamental measure theory (FMT). This enables us to evaluate the predictive quality of effective Hamiltonian models in the vicinity of the contact line. In particular, we compare the results for mean field effective Hamiltonians with disjoining pressures defined through (I) the adsorption isotherm for a planar liquid film, and (II) the normal force balance at the contact line. We find that the height profile obtained using (I) shows good agreement with the adsorption film thickness of the DFT-FMT equilibrium density profile in terms of maximal curvature and the behavior at large film heights. In contrast, we observe that while the height profile obtained by using (II) satisfies basic sum rules, it shows little agreement with the adsorption film thickness of the DFT results. The results are verified for contact angles of 20, 40 and 60 degrees

    Foliation of the Kottler-Schwarzschild-De Sitter Spacetime by Flat Spacelike Hypersurfaces

    Full text link
    There exist Kruskal like coordinates for the Reissner-Nordstrom (RN) black hole spacetime which are regular at coordinate singularities. Non existence of such coordinates for the extreme RN black hole spacetime has already been shown. Also the Carter coordinates available for the extreme case are not manifestly regular at the coordinate singularity, therefore, a numerical procedure was developed to obtain free fall geodesics and flat foliation for the extreme RN black hole spacetime. The Kottler-Schwarzschild-de Sitter (KSSdS) spacetime geometry is similar to the RN geometry in the sense that, like the RN case, there exist non-singular coordinates when there are two distinct coordinate singularities. There are no manifestly regular coordinates for the extreme KSSdS case. In this paper foliation of all the cases of the KSSdS spacetime by flat spacelike hypersurfaces is obtained by introducing a non-singular time coordinate.Comment: 12 pages, 4 figure

    Alkali Oxides. Analysis of Bonding and Explanation of the Reversal of Ordering of the 2Σ and 2Π States

    Get PDF
    We analyze the bonding in alkali oxides, MO, for M = Li, Na, K, Rb, and Cs. Using ab initio correlated wave functions we find that the ground state is ²II for M = Li, Na, and K and that the ground state is ²Ʃ^+ for M = Rb and Cs. The origin of this effect is explained

    Comparison of the Fermi-surface topologies of kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue

    Full text link
    We have measured details of the quasi one-dimensional Fermi-surface sections in the organic superconductor kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue using angle-dependent millimetre-wave techniques. There are significant differences in the corrugations of the Fermi surfaces in the deuterated and undeuterated salts. We suggest that this is important in understanding the inverse isotope effect, where the superconducting transition temperature rises on deuteration. The data support models for superconductivity which invoke electron-electron interactions depending on the topological properties of the Fermi surface

    Recent high-magnetic-field studies of unusual groundstates in quasi-two-dimensional crystalline organic metals and superconductors

    Full text link
    After a brief introduction to crystalline organic superconductors and metals, we shall describe two recently-observed exotic phases that occur only in high magnetic fields. The first involves measurements of the non-linear electrical resistance of single crystals of the charge-density-wave (CDW) system (Per)2_2Au(mnt)2_2 in static magnetic fields of up to 45 T and temperatures as low as 25 mK. The presence of a fully gapped CDW state with typical CDW electrodynamics at fields higher that the Pauli paramagnetic limit of 34 T suggests the existence of a modulated CDW phase analogous to the Fulde-Ferrell-Larkin-Ovchinnikov state. Secondly, measurements of the Hall potential of single crystals of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4, made using a variant of the Corbino geometry in quasistatic magnetic fields, show persistent current effects that are similar to those observed in conventional superconductors. The longevity of the currents, large Hall angle, flux quantization and confinement of the reactive component of the Hall potential to the edge of the sample are all consistent with the realization of a new state of matter in CDW systems with significant orbital quantization effects in strong magnetic fields.Comment: SNS 2004 Conference presentatio

    A photonic bandgap resonator to facilitate GHz frequency conductivity experiments in pulsed magnetic fields

    Full text link
    We describe instrumentation designed to perform millimeter-wave conductivity measurements in pulsed high magnetic fields at low temperatures. The main component of this system is an entirely non-metallic microwave resonator. The resonator utilizes periodic dielectric arrays (photonic bandgap structures) to confine the radiation, such that the resonant modes have a high Q-factor, and the system possesses sufficient sensitivity to measure small samples within the duration of a magnet pulse. As well as measuring the sample conductivity to probe orbital physics in metallic systems, this technique can detect the sample permittivity and permeability allowing measurement of spin physics in insulating systems. We demonstrate the system performance in pulsed magnetic fields with both electron paramagnetic resonance experiments and conductivity measurements of correlated electron systems.Comment: Submitted to the Review of Scientific instrument
    • …
    corecore