198 research outputs found

    MetaGS: an accurate method to impute and combine SNP effects across populations using summary statistics

    Get PDF
    Background Meta-analysis describes a category of statistical methods that aim at combining the results of multiple studies to increase statistical power by exploiting summary statistics. Different industries that use genomic prediction do not share their raw data due to logistic or privacy restrictions, which can limit the size of their reference populations and creates a need for a practical meta-analysis method. Results We developed a meta-analysis, named MetaGS, that duplicates the results of multi-trait best linear unbiased prediction (mBLUP) analysis without accessing raw data. MetaGS exploits the correlations among different populations to produce more accurate population-specific single nucleotide polymorphism (SNP) effects. The method improves SNP effect estimations for a given population depending on its relations to other populations. MetaGS was tested on milk, fat and protein yield data of Australian Holstein and Jersey cattle and it generated very similar genomic estimated breeding values to those produced using the mBLUP method for all traits in both breeds. One of the major difficulties when combining SNP effects across populations is the use of different variants for the populations, which limits the applications of meta-analysis in practice. We solved this issue by developing a method to impute missing summary statistics without using raw data. Our results showed that imputing summary statistics can be done with high accuracy (r > 0.9) even when more than 70% of the SNPs were missing with a minimal effect on prediction accuracy. Conclusions We demonstrated that MetaGS can replace the mBLUP model when raw data cannot be shared, which can lead to more flexible collaborations compared to the single-trait BLUP model

    The distribution of the effects of genes affecting quantitative traits in livestock

    Get PDF
    Meta-analysis of information from quantitative trait loci (QTL) mapping experiments was used to derive distributions of the effects of genes affecting quantitative traits. The two limitations of such information, that QTL effects as reported include experimental error, and that mapping experiments can only detect QTL above a certain size, were accounted for. Data from pig and dairy mapping experiments were used. Gamma distributions of QTL effects were fitted with maximum likelihood. The derived distributions were moderately leptokurtic, consistent with many genes of small effect and few of large effect. Seventeen percent and 35% of the leading QTL explained 90% of the genetic variance for the dairy and pig distributions respectively. The number of segregating genes affecting a quantitative trait in dairy populations was predicted assuming genes affecting a quantitative trait were neutral with respect to fitness. Between 50 and 100 genes were predicted, depending on the effective population size assumed. As data for the analysis included no QTL of small effect, the ability to estimate the number of QTL of small effect must inevitably be weak. It may be that there are more QTL of small effect than predicted by our gamma distributions. Nevertheless, the distributions have important implications for QTL mapping experiments and Marker Assisted Selection (MAS). Powerful mapping experiments, able to detect QTL of 0.1σp, will be required to detect enough QTL to explain 90% the genetic variance for a quantitative trait

    Assessment of microbranding as an alternative marking technique for long-term identification of New Zealand lizards

    Get PDF
    ‘Microbranding’, a system for individually identifying reptiles and amphibians based on a numbered code of spot brands applied to the body and limbs, was tested on New Zealand skinks and geckos. Common geckos (Woodworthia maculata) and copper skinks (Oligosoma aeneum) were used as test animals. Brands applied in autumn took 3 months or more to heal. There was no evidence of brand-related mortality or increased parasite loads in branded animals. However, after healing the brands faded very rapidly in the skinks to become totally unreadable in all surviving branded skinks after 2.5 years and not accurately readable in most geckos after 3 years. We therefore consider the technique unsuitable as a standard marking procedure for New Zealand lizards

    A practical approach for minimising inbreeding and maximising genetic gain in dairy cattle

    Get PDF
    A method that predicts the genetic composition and inbreeding (F) of the future dairy cow population using information on the current cow population, semen use and progeny test bulls is described. This is combined with information on genetic merit of bulls to compare bull selection methods that minimise F and maximise breeding value for profit (called APR in Australia). The genetic composition of the future cow population of Australian Holstein-Friesian (HF) and Jersey up to 6 years into the future was predicted. F in Australian HF and Jersey breeds is likely to increase by about 0.002 and 0.003 per year between 2002 and 2008, respectively. A comparison of bull selection methods showed that a method that selects the best bull from all available bulls for each current or future cow, based on its calf's APR minus F depression, is better than bull selection methods based on APR alone, APR adjusted for mean F of prospective progeny after random mating and mean APR adjusted for the relationship between the selected bulls. This method reduced F of prospective progeny by about a third to a half compared to the other methods when bulls are mated to current and future cows that will be available 5 to 6 years from now. The method also reduced the relationship between the bulls selected to nearly the same extent as the method that is aimed at maximising genetic gain adjusted for the relationship between bulls. The method achieves this because cows with different pedigree exist in the population and the method selects relatively unrelated bulls to mate to these different cows. Selecting the best bull for each current or future cow so that the calf's genetic merit minus F depression is maximised can slow the rate of increase in F in the population

    Universities and Region Forum: What role do Universities have in Levelling Up?

    Get PDF
    This briefing highlights some of the findings to come out of the Universities and Region Forum set up in 2022. The forum brought together researchers with policymakers and practitioners in order to understand Levelling Up and respond to the challenges it presented

    Universities and Region Forum: What role do Universities have in Levelling Up?

    Get PDF
    This briefing highlights some of the findings to come out of the Universities and Region Forum set up in 2022. The forum brought together researchers with policymakers and practitioners in order to understand Levelling Up and respond to the challenges it presented

    Molecular evolution of the Bovini tribe (Bovidae, Bovinae): Is there evidence of rapid evolution or reduced selective constraint in Domestic cattle?

    Get PDF
    BACKGROUND: If mutation within the coding region of the genome is largely not adaptive, the ratio of nonsynonymous (dN) to synonymous substitutions (dS) per site (dN/dS) should be approximately equal among closely related species. Furthermore, dN/dS in divergence between species should be equivalent to dN/dS in polymorphisms. This hypothesis is of particular interest in closely related members of the Bovini tribe, because domestication has promoted rapid phenotypic divergence through strong artificial selection of some species while others remain undomesticated. We examined a number of genes that may be involved in milk production in Domestic cattle and a number of their wild relatives for evidence that domestication had affected molecular evolution. Elevated rates of dN/dS were further queried to determine if they were the result of positive selection, low effective population size (N(e)) or reduced selective constraint. RESULTS: We have found that the domestication process has contributed to higher dN/dS ratios in cattle, especially in the lineages leading to the Domestic cow (Bos taurus) and Mithan (Bos frontalis) and within some breeds of Domestic cow. However, the high rates of dN/dS polymorphism within B. taurus when compared to species divergence suggest that positive selection has not elevated evolutionary rates in these genes. Likewise, the low rate of dN/dS in Bison, which has undergone a recent population bottleneck, indicates a reduction in population size alone is not responsible for these observations. CONCLUSION: The effect of selection depends on effective population size and the selection coefficient (N(e)s). Typically under domestication both selection pressure for traits important in fitness in the wild and Ne are reduced. Therefore, reduced selective constraint could be responsible for the observed elevated evolutionary ratios in domesticated species, especially in B. taurus and B. frontalis, which have the highest dN/dS in the Bovini. This may have important implications for tests of selection such as the McDonald-Kreitman test. Surprisingly we have also detected a significant difference in the supposed neutral substitution rate between synonymous and noncoding sites in the Bovine genome, with a 30% higher rate of substitution at synonymous sites. This is due, at least in part, to an excess of the highly mutable CpG dinucleotides at synonymous sites, which will have implications for time of divergence estimates from molecular data
    corecore