6 research outputs found
Peroxisome proliferator-activated receptory agonist mediated inhibition of heparanase expression reduces proteinuria
Background Proteinuria is associated with many glomerular diseases and a risk factor for the progression to renal failure. We previously showed that heparanase (HPSE) is essential for the development of proteinuria, whereas peroxisome proliferator-activated receptor y (PPARy) agonists can ameliorate proteinuria. Since a recent study showed that PPARy regulates HPSE expression in liver cancer cells, we hypothesized that PPARy agonists exert their reno-protective effect by inhibiting glomerular HPSE expression.Methods Regulation of HPSE by PPARy was assessed in the adriamycin nephropathy rat model, and cultured glomerular endothelial cells and podocytes. Analyses included immunofluorescence staining, real-time PCR, heparanase activity assay and transendothelial albumin passage assay. Direct binding of PPARy to the HPSE promoter was evaluated by the luciferase reporter assay and chromatin immunoprecipitation assay. Furthermore, HPSE activity was assessed in 38 type 2 diabetes mellitus (T2DM) patients before and after 16/24 weeks treatment with the PPARy agonist pioglitazone.Findings Adriamycin-exposed rats developed proteinuria, an increased cortical HPSE and decreased heparan sulfate (HS) expression, which was ameliorated by treatment with pioglitazone. In line, the PPARy antagonist GW9662 increased cortical HPSE and decreased HS expression, accompanied with proteinuria in healthy rats, as previously shown. In vitro, GW9662 induced HPSE expression in both endothelial cells and podocytes, and increased trans -endothelial albumin passage in a HPSE-dependent manner. Pioglitazone normalized HPSE expression in adriamycin-injured human endothelial cells and mouse podocytes, and adriamycin-induced transendothelial albumin passage was reduced as well. Importantly, we demonstrated a regulatory effect of PPARy on HPSE promoter activity and direct PPARy binding to the HPSE promoter region. Plasma HPSE activity of T2DM patients treated with pioglitazone for 16/24 weeks was related to their hemoglobin A1c and showed a moderate, near significant correlation with plasma creatinine levels.Interpretation PPARy-mediated regulation of HPSE expression appears an additional mechanism explaining the anti-proteinuric and renoprotective effects of thiazolidinediones in clinical practice.Copyright (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Radiolog
Structural and Computational Assessment of the Influence of Wet-Chemical Post-Processing of the Al-Substituted Cubic Li7La3Zr2O12
Li7La3Zr2O12 (LLZO) and related compounds are considered as promising candidates for future all-solid-state Li-ion battery applications. Still, the processing of those materials into thin membranes with the right stoichiometry and crystal structure is difficult and laborious. The sensitivity of the Li-ion conductive garnets against moisture and the associated Li+/H+ cation exchange makes their processing even more difficult. Formulation of suitable polymer/ceramic hybrid solid state electrolytes could be a prosperous way to reach the future large scale production of solid state Li-ion batteries. In fact, solvent mediated and/or slurry based wet-processing of the LLZO, e.g., tape-casting, could result in irreversible Li-ion loss of the pristine material due to Li+/H+ cation exchange. The concomitant structural changes and loss in functionality in terms of Li-ion conductivity are the results of the above process. Therefore, in the present work a systematic study on the chemical stability and structural retention of Al-substituted LLZO in different solvents is reported. It was found that Li+/H+ exchange in LLZO occurs upon solvent immersion, and its magnitude is dependent on the availability of -OH functional groups of the solvent molecules. As a result, a larger degree of Li+/H+ exchange causes higher increase of the lattice parameter of the LLZO, determined by synchrotron diffraction analyses. The expansion of the cubic unit cell was ascertained, when Li+ was replaced by H+ in the host lattice, by ab initio computational studies. The application of the most common solvent as dispersion medium, i.e., high purity water, causes the most significant Li+/H+ exchange and, therefore, structural change, while acetonitrile was proven to be the best suitable solvent for wet postprocessing of LLZO. Finally, computational calculations suggested that the Li+/H+ exchange could result in diminished ionic, i.e., mixed Li+-H+, conductivity due to the insertion of protons with lower mobility than that of Li-ions
Screening Precursor–Solvent Combinations for Li4Ti5O12 Energy Storage Material Using Flame Spray Pyrolysis
The development and industrial application of advanced lithium based energy-storage materials are directly related to the innovative production techniques and the usage of inexpensive precursor materials. Flame spray pyrolysis (FSP) is a promising technique that overcomes the challenges in the production processes such as scalability, process control, material versatility, and cost. In the present study, phase pure anode material Li4Ti5O12 (LTO) was designed using FSP via extensive systematic screening of lithium and titanium precursors dissolved in five different organic solvents. The effect of precursor and solvent parameters such as chemical reactivity, boiling point, and combustion enthalpy on the particle formation either via gas-to-particle (evaporation/nucleation/growth) or via droplet-to-particle (precipitation/incomplete evaporation) is discussed. The presence of carboxylic acid in the precursor solution resulted in pure (>95 mass %) and homogeneous LTO nanoparticles of size 4–9 nm, attributed to two reasons: (1) stabilization of water sensitive metal alkoxides precursor and (2) formation of volatile carboxylates from lithium nitrate evidenced by attenuated total reflection Fourier transform infrared spectroscopy and single droplet combustion experiments. In contrast, the absence of carboxylic acids resulted in larger inhomogeneous crystalline titanium dioxide (TiO2) particles with significant reduction of LTO content as low as ∼34 mass %. In-depth particle characterization was performed using X-ray diffraction with Rietveld refinement, thermogravimetric analysis coupled with differential scanning calorimetry and mass spectrometry, gas adsorption, and vibrational spectroscopy. High-resolution transmission electron microscopy of the LTO product revealed excellent quality of the particles obtained at high temperature. In addition, high rate capability and efficient charge reversibility of LTO nanoparticles demonstrate the vast potential of inexpensive gas-phase synthesis for energy-storage materials
Peroxisome proliferator-activated receptor ɣ agonist mediated inhibition of heparanase expression reduces proteinuria
Background: Proteinuria is associated with many glomerular diseases and a risk factor for the progression to renal failure. We previously showed that heparanase (HPSE) is essential for the development of proteinuria, whereas peroxisome proliferator-activated receptor ɣ (PPARɣ) agonists can ameliorate proteinuria. Since a recent study showed that PPARɣ regulates HPSE expression in liver cancer cells, we hypothesized that PPARɣ agonists exert their reno-protective effect by inhibiting glomerular HPSE expression. Methods: Regulation of HPSE by PPARɣ was assessed in the adriamycin nephropathy rat model, and cultured glomerular endothelial cells and podocytes. Analyses included immunofluorescence staining, real-time PCR, heparanase activity assay and transendothelial albumin passage assay. Direct binding of PPARɣ to the HPSE promoter was evaluated by the luciferase reporter assay and chromatin immunoprecipitation assay. Furthermore, HPSE activity was assessed in 38 type 2 diabetes mellitus (T2DM) patients before and after 16/24 weeks treatment with the PPARɣ agonist pioglitazone. Findings: Adriamycin-exposed rats developed proteinuria, an increased cortical HPSE and decreased heparan sulfate (HS) expression, which was ameliorated by treatment with pioglitazone. In line, the PPARɣ antagonist GW9662 increased cortical HPSE and decreased HS expression, accompanied with proteinuria in healthy rats, as previously shown. In vitro, GW9662 induced HPSE expression in both endothelial cells and podocytes, and increased transendothelial albumin passage in a HPSE-dependent manner. Pioglitazone normalized HPSE expression in adriamycin-injured human endothelial cells and mouse podocytes, and adriamycin-induced transendothelial albumin passage was reduced as well. Importantly, we demonstrated a regulatory effect of PPARɣ on HPSE promoter activity and direct PPARy binding to the HPSE promoter region. Plasma HPSE activity of T2DM patients treated with pioglitazone for 16/24 weeks was related to their hemoglobin A1c and showed a moderate, near significant correlation with plasma creatinine levels. Interpretation: PPARɣ-mediated regulation of HPSE expression appears an additional mechanism explaining the anti-proteinuric and renoprotective effects of thiazolidinediones in clinical practice. Funding: This study was financially supported by the Dutch Kidney Foundation, by grants 15OI36, 13OKS023 and 15OP13. Consortium grant LSHM16058-SGF (GLYCOTREAT; a collaboration project financed by the PPP allowance made available by Top Sector Life Sciences & Health to the Dutch Kidney Foundation to stimulate public-private partnerships)