38 research outputs found
Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea
Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ −60%), followed by chlorophyll (−50%) and bacterial biomass (−40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and – to a minor extent – the trends of the climate variables salinity and temperature
Web-based patient-reported outcomes using the International Consortium for Health Outcome Measurement dataset in a major German university hospital: observational study
Background: Collecting patient-reported outcome (PRO) data systematically enables objective evaluation of treatment and its related outcomes. Using disease-specific questionnaires developed by the International Consortium for Health Outcome Measurement (ICHOM) allows for comparison between physicians, hospitals, and even different countries. Objective: This pilot project aimed to establish a digital system to measure PROs for new patients with breast cancer who attended the Charité Breast Center. This approach should serve as a blueprint to further expand the PRO measurement to other disease entities and departments. Methods: In November 2016, we implemented a Web-based system to collect PRO data at Charité Breast Center using the ICHOM dataset. All new patients at the Breast Center were enrolled and answered a predefined set of questions using a tablet computer. Once they started their treatment at Charité, automated emails were sent to the patients at predefined treatment points. Those emails contained a Web-based link through which they could access and answer questionnaires. Results: By now, 541 patients have been enrolled and 2470 questionnaires initiated. Overall, 9.4% (51/541) of the patients were under the age of 40 years, 49.7% (269/541) between 40 and 60 years, 39.6% (214/541) between 60 and 80 years, and 1.3% (7/541) over the age of 80 years. The average return rate of questionnaires was 67.0%. When asked about the preference regarding paper versus Web-based questionnaires, 6.0% (8/134) of the patients between 50 and 60 years, 6.0% (9/150) between 60 and 70 years, and 12.7% (9/71) over the age of 70 years preferred paper versions. Conclusions: Measuring PRO in patients with breast cancer in an automated electronic version is possible across all age ranges while simultaneously achieving a high return rate
RET gene fusion and emergent Selpercatinib resistance in a calcitonin-rich neuroendocrine carcinoma: a case report
Metastatic lung neuroendocrine carcinomas provide diagnostic challenges in identifying the cell of origin. High level calcitonin expression is not pathognomonic for medullary thyroid cancer. Tumor mutation analysis may provide essential clues regarding tissue origin and treatment targets. Oncogenic RET gene fusions have been identified in non-small cell lung cancer and non-medullary thyroid cancers, whereas RET point mutations are the key genetic finding in both inherited and sporadic MTC. Patients who receive radiation for the treatment of other cancers have an increased risk of developing a second malignancy, including a neuroendocrine carcinoma. Herein, we present a case of calcitonin-rich neuroendocrine carcinoma emerging on a background of prior radiation and chemotherapy for the treatment of Hodgkin’s disease. Identification of a RET gene rearrangement (KIF5B-RET) led to initial successful treatment with selpercatinib, with eventual resistance associated with an activating mutation involving the MEK1 protein (MAP2K1 p. E102-I103 del) that led to relapse and progression of the disease