960 research outputs found

    Effects of an experimental resource pulse on the macrofaunal assemblage inhabiting seagrass macrophytodetritus

    Get PDF
    Physical disturbances and resource pulses are major structuring drivers of terrestrial and aquatic ecosystems. The accumulations of exported dead leaves from the Neptune grass, Posidonia oceanica (L.) Delile are ephemeral and highly dynamic detrital habitats offering food sources and shelter for vagile macrofauna community. These habitats are frequently subject to wind and storms which can add “new” detrital material to previous accumulations; these can be defined as resource pulses and could potentially impact the associated macrofauna. This study assesses the impact of an experimental resource pulse on the macrofauna associated with exported P. oceanica litter accumulations. The experimental design consisted of two pulse treatments (the addition of dead leaves with and without the associated fauna), and two controls (one procedural, and one total control), where the added material was left underwater for 14 days. Invertebrates then present in the sampled detritus were all identified and counted. Our data suggest that the responses of these invertebrates to resource pulses present intermediate characteristics between aquatic and terrestrial ecosystems responses. Inputting a moderate amount of dead P. oceanica leaves into experimental mesocosms had a non-negligible impact and rapidly affected the macrofauna community. Specialist detritivores species were boosted while herbivore/detritivore species dramatically decreased. Predators also showed a modest but significant density increase, demonstrating the fast propagation of the pulse response throughout the entire community and through several trophic levels. Strict hypoxia-tolerant species were also only observed in the treated mesocosms, indicating the strong influence of resource pulses on physico-chemical conditions occurring inside litter accumulations

    Real-time dynamics in spin-1/2 chains with adaptive time-dependent DMRG

    Get PDF
    We investigate the influence of different interaction strengths and dimerizations on the magnetization transport in antiferromagnetic spin-1/2 XXZ-chains. We focus on the real-time evolution of the inhomogeneous initial state with all spins pointing up along the z axis in the left half and down in the right half of the chain, using the adaptive time-dependent density-matrix renormalization group (adaptive t-DMRG). We find on time-scales accessible to us ballistic magnetization transport for small Sz-Sz-interaction and arbitrary dimerization, but almost no transport for stronger Sz-Sz-interaction, with a sharp crossover at Jz=1. At Jz=1 results indicate superdiffusive transport. Additionally, we perform a detailed analysis of the error made by the adaptive time-dependent DMRG using the fact that the evolution in the XX-model is known exactly. We find that the error at small times is dominated by the error made by the Trotter decomposition, whereas for longer times the DMRG truncation error becomes the most important, with a very sharp crossover at some "runaway" time.Comment: 13 pages, 20 figure

    An ecological study of <i>Electra posidoniae</i> Gautier, 1954 (Cheilostomata, Anasca), a bryozoan epiphyte found solely on the seagrass <i>Posidonia oceanica</i> (L.) Delile, 1813

    Get PDF
    The bryozoan Electra posidoniae Gautier is found solely on the leaves of the Neptune grass Posidonia oceanica (L.) Delile, dominating the leaf epifauna of this seagrass. Epiphytes of marine angiosperms (or seagrasses) often play an important role in ecosystem functioning, for example as food web suppliers. As dysfunction of the epiphytic component is often implied in human induced seagrass decline, it is important to understand the dynamics and life traits of this community in pristine areas. This study involved the monthly assessment of colonization dynamics, biomass seasonality, and diet composition through measurements of stable isotopes, in E. posidoniae at a depth of 10 m in the Revellata Bay (Corsica, Mediterranean Sea). Ancestrulae (i.e. colony founders) appeared towards the end of winter and were very selective in their settlement position along the leaves of P. oceanica. A maximum of 100,000 colonies per square meter was recorded. Colonies of E. posidoniae dominated the epiphytic community biomass in early spring, but were overtaken by epiphytic algae in June. Food shortage could be involved in this reduction in dominance. Although stable isotope ratios of C, N and S showed that this suspension feeder mainly relies on the water column for its food, other food sources such as re-suspended epiphytic diatoms could be important in late spring (i.e. after the phytoplanktonic bloom). Additionally, a contribution of seagrass phytodetritus to the diet of this species cannot be excluded. The species was almost absent in winter, raising the question of its recruitment in spring. This study confirms the quantitative importance of this species in the seagrass meadow and explores its role in the relationship between the water column and this seagrass ecosystem

    Phase distortions of attosecond pulses produced by resonance-enhanced high harmonic generation

    Get PDF
    Resonant enhancement of high harmonic generation can be obtained in plasmas containing ions with strong radiative transitions resonant with harmonic orders. The mechanism for this enhancement is still debated. We perform the first temporal characterization of the attosecond emission from a tin plasma under near-resonant conditions for two different resonance detunings. We show that the resonance considerably changes the relative phase of neighbouring harmonics. For very small detunings, their phase locking may even be lost, evidencing strong phase distortions in the emission process and a modified attosecond structure. These features are well reproduced by our simulations, allowing their interpretation in terms of the phase of the recombination dipole moment

    Temporal evolution of sand corridors in a <i>Posidonia oceanica</i> seascape: a 15-year study

    Get PDF
    The spatial dynamic of Posidonia oceanica meadows is a process extending over centuries. This paper shows evidence of the natural dynamics of P. oceanica “shifting intermattes” or “sand corridors” (hereafter SCs): unvegetated patches within a dense meadow. We studied features and temporal evolution (2001-2015) of 5 SCs in the Calvi Bay (Corsica) at 15 m depth and followed the characteristics the P. oceanica meadow lining the edge of patches. All SCs show a similar topography. The eroded side is a vertical edge where roots, rhizomes and sediments are visible, when on the opposite colonized side, the sand is at the same level as the continuous meadow. The vertical edge reaches a maximum height of 160 cm and is eroded by orbital bottom currents with a maximum speed of 12 cm.s-1, the erosion speed ranging from 0.6 to 15 cm.y-1. SCs progress toward the coastline with a mean speed of 10 cm.y-1, the rate of colonization by P. oceanica shoots ranging from 1.5 to 21 cm.y-1. We calculated that the studied SCs would reach the coastline within 500 to 600 years. We finally discuss the implication of such dynamic in the framework of meadows’ colonization assessment and the seascape dynamic

    Long-term feeding ecology and habitat use in harbour porpoises <i>Phocoena phocoena</i> from Scandinavian waters inferred from trace elements and stable isotopes

    Get PDF
    Background. We investigated the feeding ecology and habitat use of 32 harbour porpoises by-caught in 4 localities along the Scandinavian coast from the North Sea to the Barents Sea using time-integrative markers: stable isotopes (δ13C, δ15N) and trace elements (Zn, Cu, Fe, Se, total Hg and Cd), in relation to habitat characteristics (bathymetry) and geographic position (latitude). Results. Among the trace elements analysed, only Cd, with an oceanic specific food origin, was found to be useful as an ecological tracer. All other trace elements studied were not useful, most likely because of physiological regulation and/or few specific sources in the food web. The δ13C, δ15N signatures and Cd levels were highly correlated with each other, as well as with local bathymetry and geographic position (latitude). Variation in the isotopic ratios indicated a shift in harbour porpoise's feeding habits from pelagic prey species in deep northern waters to more coastal and/or demersal prey in the relatively shallow North Sea and Skagerrak waters. This result is consistent with stomach content analyses found in the literature. This shift was associated with a northward Cd-enrichment which provides further support to the Cd 'anomaly' previously reported in polar waters and suggests that porpoises in deep northern waters include Cd-contaminated prey in their diet, such as oceanic cephalopods. Conclusion. As stable isotopes and Cd provide information in the medium and the long term respectively, the spatial variation found, shows that harbour porpoises experience different ecological regimes during the year along the Scandinavian coasts, adapting their feeding habits to local oceanographic conditions, without performing extensive migration
    corecore