5 research outputs found

    The immunological and virological consequences of planned treatment interruptions in children with HIV infection

    Get PDF
    Contains fulltext : 126098.pdf (publisher's version ) (Open Access)OBJECTIVES: To evaluate the immunological and viral consequences of planned treatment interruptions (PTI) in children with HIV. DESIGN: This was an immunological and virological sub-study of the Paediatric European Network for Treatment of AIDS (PENTA) 11 trial, which compared CD4-guided PTI of antiretroviral therapy (ART) with continuous therapy (CT) in children. METHODS: HIV-1 RNA and lymphocyte subsets, including CD4 and CD8 cells, were quantified on fresh samples collected during the study; CD45RA, CD45RO and CD31 subpopulations were evaluated in some centres. For 36 (18 PTI, 18 CT) children, immunophenotyping was performed and cell-associated HIV-1 DNA analysed on stored samples to 48 weeks. RESULTS: In the PTI group, CD4 cell count fell rapidly in the first 12 weeks off ART, with decreases in both naive and memory cells. However, the proportion of CD4 cells expressing CD45RA and CD45RO remained constant in both groups. The increase in CD8 cells in the first 12 weeks off ART in the PTI group was predominantly due to increases in RO-expressing cells. PTI was associated with a rapid and sustained increase in CD4 cells expressing Ki67 and HLA-DR, and increased levels of HIV-1 DNA. CONCLUSIONS: PTI in children is associated with rapid changes in CD4 and CD8 cells, likely due to increased cell turnover and immune activation. However, children off treatment may be able to maintain stable levels of naive CD4 cells, at least in proportion to the memory cell pool, which may in part explain the observed excellent CD4 cell recovery with re-introduction of ART

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore