1,226 research outputs found

    Mena, a new available marker in tumors of salivary glands?

    Get PDF
    Mena (mammalian Ena) is an actin regulatory protein involved in cell motility and adhesion. Based on its potential role in malignant transformation revealed in other organs, we analyzed the Mena expression in normal salivary glands (SG) and salivary tumors. Mena expression was determined in normal SG (n=10) and also benign (n=20) and malignant (n=35) lesions of SG. For the immunohistochemical staining we used the anti-Mena antibody. All normal SG and the benign lesions (10 pleomorphic adenomas, 10 Warthin's tumors) were Mena negative. Salivary duct carcinomas (n=5), carcinomas in pleomorphic adenoma (n=5), acinic cell carcinomas (n=5), squamous cell carcinomas (n=10) and high-grade mucoepidermoid carcinomas (n=2) were positive. The lymphomas (n=5) and low-grade mucoepidermoid carcinomas (n=1) were Mena negative. In one case the lymphoblastic cells stained positive for Mena. Some of the endothelial cells, in the peritumoral vessels, were Mena positive. To the best of our knowledge, this is the first study in the literature about Mena expression in salivary tumors. Our study suggests that Mena protein seems to play a role in malignant transformation and its intensity is correlated with the type and grade of tumor and also with vascular invasion. Its positivity in endothelial cells may suggest its potential role in tumor angiogenesis

    Neuromarketing: qué sabe de ti, que los demås no

    Get PDF
    En este documento se describe la forma en la que el neuromarketing hace que la segmentaciĂłn de gĂ©nero, sea una herramienta funcional para poder conocer al cliente y sus deseos. Se explorarĂĄ el mercadeo desde sus inicios, mostrando cĂłmo evoluciona hasta enfocarse en el cliente como su principal objetivo. Al llegar a este punto el mercadeo se encuentra con un nuevo aliado, la neurociencia, la cual le muestra que por medio de diversas tĂ©cnicas tiene la capacidad de medir las reacciones de su consumidor, a los distintos estĂ­mulos que le envĂ­a para cautivarlo. En este proceso se dan a conocer las tecnologĂ­as mĂĄs usadas por el neuromarketing para este fin; ademĂĄs se expondrĂĄ parte de la anatomĂ­a del consumidor con la que interactĂșa el mercadeo: sus sentidos y su cerebro. Posteriormente se explica cĂłmo a travĂ©s del entendimiento de las percepciones y comportamiento del cliente, puede beneficiarse el mercadeo en sus propĂłsitos y su vez, satisfacer al mercado en lo que realmente quiere.This document describes the way in which neuromarketing makes of gender segmentation a functional tool for knowing the customers and their desires. Marketing will be explored from its origins, showing how it evolves to focus on the customer as its main objective. At this point, marketing meets neuroscience, a new ally who shows through many techniques, that has the ability to measure the consumers’ reactions to the different stimuli that marketing sends to captivate them. In this process, it will make known the technologies that neuromarketing uses the most for this purpose; it will also present the consumers’ anatomy, which the marketing interacts with the most: the senses and the brain. Subsequently, it will be explained how, with understanding clients’ perceptions and behavior, marketing gets to benefit its purposes and at the same time satisfy what the market’s really wants.Centro de Estudios Empresariales para la Perdurabilida

    Salvage high-dose chemotherapy for children with extragonadal germ-cell tumours

    Get PDF
    We reviewed the European Group for Blood and Marrow Transplantation (EBMT) experience with salvage high-dose chemotherapy (HDC) in paediatric patients with extragonadal germ-cell tumour (GCT). A total of 23 children with extragonadal GCT, median age 12 years (range 1–20), were treated with salvage HDC with haematopoietic progenitor cell support. The GCT primary location was intracranial site in nine cases, sacrococcyx in eight, retroperitoneum in four, and mediastinum in two. In all, 22 patients had a nongerminomatous GCT and one germinoma. Nine patients received HDC in first- and 14 in second- or third-relapse situation. No toxic deaths occurred. Overall, 16 of 23 patients (70%) achieved a complete remission. With a median follow-up of 66 months (range 31–173 months), 10 (43%) are continuously disease-free. Of six patients who had a disease recurrence after HDC, one achieved a disease-free status with surgical resection followed by chemotherapy and radiotherapy. In total, 11 patients (48%) are currently disease-free. Eight of 14 patients (57%) with extracranial primary and three of nine patients (33%) with intracranial primary GCT are currently disease-free. HDC induced impressive long-term remissions as salvage treatment in children with extragonadal extracranial GCTs. Salvage HDC should be investigated in prospective trials in these patients

    Thermal neutron capture cross section of the radioactive isotope Fe 60

    Get PDF
    Background: Fifty percent of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. Purpose: One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as Fe60 with a half-life of 2.60×106 yr. To reproduce this Îł activity in the universe, the nucleosynthesis of Fe60 has to be understood reliably. Methods: An Fe60 sample produced at the Paul Scherrer Institut (Villigen, Switzerland) was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-UniversitĂ€t Mainz (Mainz, Germany). Results: The thermal neutron capture cross section has been measured for the first time to σth=0.226(-0.049+0.044)b. An upper limit of σRI<0.50b could be determined for the resonance integral. Conclusions: An extrapolation towards the astrophysically interesting energy regime between kT=10 and 100 keV illustrates that the s-wave part of the direct capture component can be neglected

    Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow

    Get PDF
    An optical flow gradient algorithm was applied to spontaneously forming net- works of neurons and glia in culture imaged by fluorescence optical microscopy in order to map functional calcium signaling with single pixel resolution. Optical flow estimates the direction and speed of motion of objects in an image between subsequent frames in a recorded digital sequence of images (i.e. a movie). Computed vector field outputs by the algorithm were able to track the spatiotemporal dynamics of calcium signaling pat- terns. We begin by briefly reviewing the mathematics of the optical flow algorithm, and then describe how to solve for the displacement vectors and how to measure their reliability. We then compare computed flow vectors with manually estimated vectors for the progression of a calcium signal recorded from representative astrocyte cultures. Finally, we applied the algorithm to preparations of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the capability of the algorithm for capturing different types of spatiotemporal calcium activity. We discuss the imaging requirements, parameter selection and threshold selection for reliable measurements, and offer perspectives on uses of the vector data.Comment: 23 pages, 5 figures. Peer reviewed accepted version in press in Annals of Biomedical Engineerin

    A genetically encoded reporter of synaptic activity in vivo

    Get PDF
    To image synaptic activity within neural circuits, we tethered the genetically encoded calcium indicator (GECI) GCaMP2 to synaptic vesicles by fusion to synaptophysin. The resulting reporter, SyGCaMP2, detected the electrical activity of neurons with two advantages over existing cytoplasmic GECIs: it identified the locations of synapses and had a linear response over a wider range of spike frequencies. Simulations and experimental measurements indicated that linearity arises because SyGCaMP2 samples the brief calcium transient passing through the presynaptic compartment close to voltage-sensitive calcium channels rather than changes in bulk calcium concentration. In vivo imaging in zebrafish demonstrated that SyGCaMP2 can assess electrical activity in conventional synapses of spiking neurons in the optic tectum and graded voltage signals transmitted by ribbon synapses of retinal bipolar cells. Localizing a GECI to synaptic terminals provides a strategy for monitoring activity across large groups of neurons at the level of individual synapses

    Branching Fractions for D0 -> K+K- and D0 -> pi+pi-, and a Search for CP Violation in D0 Decays

    Full text link
    Using the large hadroproduced charm sample collected in experiment E791 at Fermilab, we have measured ratios of branching fractions for the two-body singly-Cabibbo-suppressed charged decays of the D0: (D0 -> KK)/(D0 -> Kpi) = 0.109 +- 0.003 +- 0.003, (D0 -> pipi)/(D0 -> Kpi) = 0.040 +- 0.002 +- 0.003, and (D0 -> KK)/(D0 -> pipi) = 2.75 +- 0.15 +- 0.16. We have looked for differences in the decay rates of D0 and D0bar to the CP eigenstates K+K- and pi+pi-, and have measured the CP asymmetry parameters A_CP(K+K-) = -0.010 +- 0.049 +- 0.012 and A_CP(pi+pi-) = -0.049 +- 0.078 +- 0.030, both consistent with zero.Comment: 10 Postscript pages, including 2 figures. Submitted to Phys. Lett.
    • 

    corecore