3 research outputs found
Accuracy of irradiance and power of light-curing units measured with handheld or laboratory grade radiometers
This study measured and compared exitance irradiance and power of 4 commercial dental light-curing units (LCU) (Elipar S10, Elipar DeepCure-S, Corded VALO and Bluephase Style) using different types of radiometers. The devices used to analyze the LCU were classified as either handheld analog (Henry Schein, Spring, Demetron 100A, Demetron 100B and Demetron 200), handheld digital (Bluephase 1, Bluephase II, Coltolux, CureRite and Hilux), or laboratory instruments (Thermopile and Integrating Sphere). The laboratory instruments and the Bluephase II radiometer were also used to measure the LCU鈥檚 power (mW). The LCU鈥檚 were activated for 20 s (n=5). Data were analyzed using Kruskal-Wallis and Student-Newman-Keuls multiple comparison test (a=0.05). Among the LCU, the laboratory instruments presented different irradiance values, except for Corded VALO. The Coltolux and Hilux radiometers measured greater irradiance values compared to the laboratory instruments for the four LCUs tested. Within a given LCU, handheld analog units measured lower irradiance values, compared to handheld digital and laboratory instruments, except using the Spring radiometer for the Elipar S10 LCU. None of the handheld radiometers were able to measure similar irradiance values compared to laboratory instruments, except for Elipar S10 when comparing Bluephase 1 and Thermopile. Regarding power measurement, Bluephase II always presented the lowest values compared to the laboratory instruments. These findings suggest that the handheld radiometers utilized by practitioners (analog or digital) exhibit a wide range of irradiance values and may show lower outcomes compared to laboratory based instruments304397403CONSELHO NACIONAL DE DESENVOLVIMENTO CIENT脥FICO E TECNOL脫GICO - CNPQ307217-2014-0This study was supported by Brazilian Financial Agencies: FAEPEX-UNICAMP(2054/16) and CNPq (307217-2014-0
Operative Dentistry
p. 63-70This study evaluated the effects of curing modes and storage conditions on fluoride release of resin cements. In phase 1, the cumulative fluoride release rate from samples of the resin cements (Panavia F 2.0, RelyX Unicem, MaxCem, and BisCem) was quantified after 15 days storage in water (n=4). In phase 2, the fluoride release profiles from the same materials were analyzed during pH cycling (n=4). In this second phase, fluoride was measured at specific times (one, two, three, five, eight, and 15 days). Disk-shaped specimens were prepared (10 mm 脳 0.5 mm), and the materials were either light activated or allowed to autopolymerize. For both phases, the fluoride release was measured using a fluoride ion-specific electrode. The fluoride release in water was not affected by the curing mode of RelyX Unicem and Maxcem resin cements. Panavia F. 2.0 and BisCem resin cements, either light cured or autopolymerized modes, released higher amounts of fluoride in water than the other self-adhesive cements. In phase 2, the concentration of fluoride released decreased from the first day of pH cycling until the 15th day for all resin cements, for both curing modes, regardless of the storage solution used (demineralizing/remineralizing). The fluoride release rate during pH cycling by Panavia F 2.0 and MaxCem was not affected by the curing mode. The effect of the curing mode on fluoride ion release in water or during pH cycling was product dependent