85 research outputs found

    Superradiance for atoms trapped along a photonic crystal waveguide

    Get PDF
    We report observations of superradiance for atoms trapped in the near field of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge near the D1_1 transition of atomic cesium, strong interaction is achieved between trapped atoms and guided-mode photons. Following short-pulse excitation, we record the decay of guided-mode emission and find a superradiant emission rate scaling as ΓˉSRNˉΓ1D\bar{\Gamma}_{\rm SR}\propto\bar{N}\cdot\Gamma_{\rm 1D} for average atom number 0.19Nˉ2.60.19 \lesssim \bar{N} \lesssim 2.6 atoms, where Γ1D/Γ0=1.1±0.1\Gamma_{\rm 1D}/\Gamma_0 =1.1\pm0.1 is the peak single-atom radiative decay rate into the PCW guided mode and Γ0\Gamma_{0} is the Einstein-AA coefficient for free space. These advances provide new tools for investigations of photon-mediated atom-atom interactions in the many-body regime.Comment: 11 pages, 10 figure

    Corrections to our results for optical nanofiber traps in Cesium

    Get PDF
    Several errors in Refs. [1, 2] are corrected related to the optical trapping potentials for a state-insensitive, compensated nanofiber trap for the D_2 transition of atomic Cesium. Section I corrects our basic formalism in Ref. [1] for calculating dipole-force potentials. Section II corrects erroneous values for a partial lifetime and a transition wavelength in Ref. [1]. Sections III and IV present corrected figures for various trapping configurations considered in Refs. [1] and [2], respectively

    Demonstration of a state-insensitive, compensated nanofiber trap

    Get PDF
    We report the experimental realization of an optical trap that localizes single Cs atoms ≃ 215 nm from surface of a dielectric nanober. By operating at magic wavelengths for pairs of counterpropagating red- and blue-detuned trapping beams, dierential scalar light shifts are eliminated, and vector shifts are suppressed by ≈ 250. We thereby measure an absorption linewidth Γ/2π = 5.7 ± 0.1 MHz for the Cs 6S_(1/2), F = 4 → 6P_(3/2), F' = 5 transition, where Γ_0/2π = 5.2 MHz in free space. Optical depth d ≃ 66 is observed, corresponding to an optical depth per atom d_1 ≃ 0.08. These advances provide an important capability for the implementation of functional quantum optical networks and precision atomic spectroscopy near dielectric surfaces

    A state-insensitive, compensated nanofiber trap

    Get PDF
    Laser trapping and interfacing of laser-cooled atoms in an optical fiber network is an important capability for quantum information science. Following the pioneering work of Balykin et al. and Vetsch et al., we propose a robust method of trapping single Cesium atoms with a two-color state-insensitive evanescent wave around a dielectric nanofiber. Specifically, we show that vector light shifts (i.e., effective inhomogeneous Zeeman broadening of the ground states) induced by the inherent ellipticity of the forward-propagating evanescent wave can be effectively canceled by a backward-propagating evanescent wave. Furthermore, by operating the trapping lasers at the magic wavelengths, we remove the differential scalar light shift between ground and excited states, thereby allowing for resonant driving of the optical D2 transition. This scheme provides a promising approach to trap and probe neutral atoms with long trap and coherence lifetimes with realistic experimental parameters.Comment: 20 pages, 12 figure

    Optical Properties of Collective Excitations for Finite Chains of Trapped Atoms

    Full text link
    Resonant dipole-dipole interaction modifies the energy and decay rate of electronic excitations for finite one dimensional chains of ultracold atoms in an optical lattice. We show that collective excited states of the atomic chain can be divided into dark and bright modes, where a superradiant mode with an enhanced collective effective dipole dominates the optical scattering. Studying the generic case of two chain segments of different length and position exhibits an interaction blockade and spatially structured light emission. Ultimately, an extended system of several interfering segments models a long chain with randomly distributed defects of vacant sites. The corresponding emission pattern provides a sensitive tool to study structural and dynamical properties of the system.Comment: 8 pages, 12 figure

    A Fermi-degenerate three-dimensional optical lattice clock

    Full text link
    Strontium optical lattice clocks have the potential to simultaneously interrogate millions of atoms with a high spectroscopic quality factor of 4×10174 \times 10^{-17}. Previously, atomic interactions have forced a compromise between clock stability, which benefits from a large atom number, and accuracy, which suffers from density-dependent frequency shifts. Here, we demonstrate a scalable solution which takes advantage of the high, correlated density of a degenerate Fermi gas in a three-dimensional optical lattice to guard against on-site interaction shifts. We show that contact interactions are resolved so that their contribution to clock shifts is orders of magnitude lower than in previous experiments. A synchronous clock comparison between two regions of the 3D lattice yields a 5×10195 \times 10^{-19} measurement precision in 1 hour of averaging time.Comment: 19 pages, 4 figures; Supplementary Material

    Entanglement of spin waves among four quantum memories

    Get PDF
    Quantum networks are composed of quantum nodes that interact coherently by way of quantum channels and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a `web' for connecting quantum processors for computation and communication, as well as a `simulator' for enabling investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and of efficiently transferring stored entanglement into quantum channels for distribution across the network. While such capabilities have been demonstrated for diverse bipartite systems (i.e., N=2 quantum systems), entangled states with N > 2 have heretofore not been achieved for quantum interconnects that coherently `clock' multipartite entanglement stored in quantum memories to quantum channels. Here, we demonstrate high-fidelity measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of atomic entanglement to four photonic quantum channels; and the characterization of the full quadripartite entanglement by way of quantum uncertainty relations. Our work thereby provides an important tool for the distribution of multipartite entanglement across quantum networks.Comment: 4 figure
    corecore