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Abstract. Laser trapping and interfacing of laser-cooled atoms in an optical
fiber network is an important tool for quantum information science. Following
the pioneering work of Balykin et al (2004 Phys. Rev. A 70 011401) and
Vetsch et al (2010 Phys. Rev. Lett. 104 203603), we propose a robust method
for trapping single cesium atoms with a two-color state-insensitive evanescent
wave around a dielectric nanofiber. Specifically, we show that vector light shifts
(i.e. effective inhomogeneous Zeeman broadening of the ground states) induced
by the inherent ellipticity of the forward-propagating evanescent wave can be
effectively canceled by a backward-propagating evanescent wave. Furthermore,
by operating the trapping lasers at the magic wavelengths, we remove the
differential scalar light shift between ground and excited states, thereby allowing
for resonant driving of the optical D2 transition. This scheme provides a
promising approach to trap and probe neutral atoms with long trap and coherence
lifetimes with realistic experimental parameters.
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1. Introduction

The development of a matter–light quantum interface using cold atoms and optical fibers
has been an active field of research over the last few years [1]. Recent advances toward this
goal include the observation of electromagnetically induced transparency and the loading of
ultracold atoms in hollow-core optical fibers [2–5], as well as the trapping and probing of atomic
ensembles via the evanescent fields surrounding tapered nanofibers [6–9]. While prominent
examples of off-resonant interaction between evanescent waves and matter have used a plane
dielectric geometry for atom optics and interferometry [10, 11] as well as for surface traps
of quantum degenerate gases [12–14], recent progress in atom–light interactions with optical
waveguides [4, 5, 7–9] set the stage for the fiber integration of free-space quantum systems in
a quantum network via quantum-state transfer between matter and light [15–18] and for strong
coupling of single atoms and photons trapped near microcavities [19–24]. Furthermore, these
effective one-dimensional (1D) systems may be applied to investigating quantum many-body
phenomena in low dimensions with long-range interactions mediated by the waveguide [25–28].

One major drawback of many optical traps is that spatially inhomogeneous energy shifts
U (r) generally depend on the atomic electronic state, limiting the long-lived trap and coherence
times necessary for repeated coherent operations [29]. This is traditionally alleviated by
constructing a state-insensitive optical trap designed to decouple atomic transition frequencies
from the spatially varying potential of each electronic state [30]. Specifically, in the ‘magic’
wavelength conditions, the differential response of the dynamic scalar polarizabilities α(0)(ω)

for the ground and excited states α
(0)

|g〉
, α

(0)

|e〉 at the optical frequency ω can be tailored such that

both levels are perturbed identically with α
(0)

|g〉
= α

(0)

|e〉 . This leads to a vanishing differential
atomic level shift δUscalar = 0 [30–34]. Differential shifts for the hyperfine ground states can
be minimized by using far off-resonant beams, whereas Zeeman coherence can be conveniently
protected by using linearly polarized light in which the vector light shifts are zero.
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Although such magic wavelengths can be used for nanofiber traps [35], the strongly guiding
nature of the waveguide inevitably leads to non-negligible longitudinal electric fields Ez in the
evanescent region, which are out of phase with the transverse field E⊥ = (Ex , Ey). Here, z refers
to the direction parallel to the fiber axis, while x and y are the coordinates perpendicular to
the fiber axis. The resulting local polarization at location r is in general elliptical even for
linearly polarized input beams, and induces vector shifts Uvector. The differential vector shift
δUvector in turn manifests itself as a ‘fictitious magnetic field’, leading to inhomogeneous Zeeman
broadening [36]. Furthermore, the spatially varying elliptical polarization of the evanescent field
on a scale δr < λ renders it difficult to cancel δUvector using bias fields, resulting in increased
heating rate [29] and limited coherence time [37].

Building upon the recent realization of a nanofiber trap as proposed in [38] and
demonstrated in [6, 39], we propose a promising strategy for a state-insensitive evanescent field
trap. Differential scalar shifts δUscalar between |g〉 and |e〉 are canceled using ‘magic’ wavelength
conditions. The inhomogeneous Zeeman broadening δUvector caused by a forward propagating
blue-detuned field E(fwd) is canceled by a backward propagating field E(bwd) with a small relative
frequency detuning δ f b. Thus, our scheme can compensate for the light shifts of the strongly
guided evanescent waves to the first order in the space external to the dielectric fiber, leading
to favorable parameters for the realization of a long-lived fiber-integrated quantum memory and
resonant coupling to ultra-high-quality micro-cavities based on optically trapped atoms.

The paper is organized as follows. Section 2 presents our scheme for generating a state-
insensitive nanofiber trap. We start by introducing the general Hamiltonian for the atom–light
dipole interaction (section 2.1); we next discuss the principle of evanescent optical traps around
a nanofiber (section 2.2), before describing in more detail the spatially varying electric field
polarization of the evanescent wave (section 2.3). We finally show how to cancel the subsequent
vector (section 2.4) and scalar (section 2.5) light shifts induced on the D2 transition of cesium.
In section 3, the benefits of using our proposed scheme are shown. We first describe the total
Hamiltonian used for calculating the trapping potentials (section 3.1). We then plot the adiabatic
potentials obtained for the ground (6S1/2) and excited (6P3/2) states of Cs using the parameters
in [6] and illustrate the effects of the vector shifts (section 3.2). Finally, the potentials
obtained with our scheme are shown and an estimate of residual differential shifts is provided
(section 3.2). We then proceed to our concluding remarks in section 4.

2. A state-insensitive nanofiber trap

In this section, we discuss an ab initio calculation of the optical nanofiber trap for atomic
cesium. We show that the light shifts caused by the elliptically polarized components of the
fiber’s evanescent field are not negligible. We then propose a scheme to cancel these shifts and
generate a two-color, state-insensitive, 3D trap for Cs atoms along the nanofiber.

2.1. ac Stark shift Hamiltonian

We start by considering the Hamiltonian for an atom interacting with an electric field E in the
dipole approximation:

Ĥ ls = −d̂ · Ê, (1)
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where d̂ is the electric dipole operator and Ê is the electric field operator. Taking into account
the atomic hyperfine structure, this Hamiltonian can be decomposed into its spherical tensor
components parameterized by the dynamic polarizability α(ω) [40–42]:

Ĥ ls = Ĥ 0 + Ĥ 1 + Ĥ 2

= α(0)Ê(−)
· Ê(+) + iα(1) (Ê

(−)
× Ê(+)) · F̂

F

+
∑
µ,ν

α(2) Ê (−)
µ Ê (+)

ν

3

F(2F − 1)

[
1

2
(F̂µ F̂ν + F̂ν F̂µ) −

1

3
F̂2δµν

]
, (2)

where α(0), α(1) and α(2) are the scalar, vector and tensor atomic dynamic polarizabilities, Ê(+)

and Ê(−) are the positive and negative frequency components of the electric field, F̂ = Î + Ĵ is
the atomic total angular momentum operator, with Î and Ĵ the nuclear and electronic angular
momentum operators, µ, ν ∈ {−1, 0, 1} are components in the spherical tensor basis, and Ĥ 0,
Ĥ 1 and Ĥ 2 are the terms associated with the scalar, vector and tensor light shifts, respectively.
The light shifts Uscalar, Uvector and Utensor arising from each term have been expressed explicitly
in [40, 41].

For two-level atoms with ground and excited states |g〉, |e〉, the scalar shift Uscalar can
be approximated by Uscalar ∝ |E|

2/δ for detunings δ = ω − ωa large compared to the excited
state decay rate 0, where ω is the electric field angular frequency and ωa is the |g〉 → |e〉
transition frequency. The ground state will experience a repulsive potential for blue-detuned
(δ > 0) electric fields, and an attractive potential for red-detuned (δ < 0) electric fields. The
scalar dynamic polarizability α(0) is in general different for the states |g〉 and |e〉, resulting
in a differential scalar shift and a mismatch of the ground and excited state potentials. For the
typically anti-trapped excited state, near-resonant driving of the transition by an additional beam
with frequency ω2 ' ωa can cause significant heating of a trapped atom [29]. This situation can

be remedied by the use of ‘magic’ wavelengths for which α
(0)

|g〉
= α

(0)

|e〉 [30–32, 34].

The vector term Ĥ 1 of equation (2) induces a Zeeman-like splitting proportional to a
projection of the total atomic angular momentum F and arises from a so-called ‘fictitious
magnetic field’ proportional to the ellipticity of the electric field [36]. In the case of a free-
space plane wave propagating along the z-axis, Ĥ 1 can be expressed in terms of the Stokes
operators Ŝ = (Ŝ0, Ŝx , Ŝy, Ŝz) as [41]

Ĥ 1 ∝ α(1)(ω)ε
F̂z

F
, (3)

where ε = 〈Ŝz〉/〈Ŝ0〉 =
|E+1|

2
−|E−1|

2

|E+1|
2+|E−1|

2 is the ellipticity of the electric field. For an elliptically
polarized beam, the vector shift can be as large as the scalar shift, and can, for example, be used
to cancel the differential light shifts of rubidium atoms confined in a 3D optical lattice [43].

The last term Ĥ 2 in equation (2) represents the tensor shift. It vanishes for atoms with total
angular momentum F = 1/2 [41]. In the case of the D2 transition of Cs, which we consider
here, it will depend only on the electronic angular momentum Ĵ for detunings large compared to
the 6P3/2 excited state hyperfine structure, and vanish for J =

1
2 [40, 41]. It will therefore only

act on the excited state of the Cs D2 transition, inducing shifts on the Zeeman m F ′ sublevels
proportional to m2

F ′ .
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Figure 1. Trapping schemes. (a) Field intensity |E |
2 in the plane transverse to

the fiber for a single, x-polarized beam at λ = 937 nm. |E |
2 is normalized to the

intensity just outside the fiber I0 = |E(r = a+, φ = 0)|2, with a = 250 nm and
a+ = a + |r − a|, r → a. The red dashed arrow indicates the input polarization.
(b) Trapping scheme used in [6]. Red (blue)-detuned beams are shown by
red (blue) thick arrows. Input polarizations are shown by the thin arrows.
A single, y-polarized blue-detuned beam is used. (c) Three-beam scheme with
parallel x-polarizations. All beams have an intensity maximum in the x–y plane
along the direction of the input polarization. (d) A second x-polarized blue-
detuned beam is added to compensate for the vector shifts, as discussed in the
main text.

2.2. Evanescent optical traps using the fundamental mode of the waveguide

When the radius a of an optical fiber is reduced well below the propagating field wavelength
λ, the resulting cladding-to-air waveguide supports only the ‘hybrid’ fundamental mode HE11

[7, 44]. In this strongly guiding regime, a significant fraction of energy of the HE11 mode is
carried in the form of an evanescent wave outside of the nanofiber. The evanescent field intensity
is azimuthally asymmetric when the input polarization is linear [7, 44]. Figure 1(a) shows the
electric field intensity |E |

2
= |Ex |

2 + |Ey|
2 + |Ez|

2 in a plane transverse to the fiber for a single,
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linearly polarized beam. The unit vectors (ex , ey, ez) form the basis of the (x , y, z) frame, and
(r, φ) are the cylindrical coordinates in the transverse plane (x , y).

By appropriately combining blue-detuned and red-detuned fields Ered and Eblue in an
optical nanofiber, an atomic trapping potential can be engineered from the evanescent electric
fields [38]. Different configurations can be used for obtaining 3D confinement. Here, we
consider the schemes illustrated in figure 1, for an infinite SiO2 cylindrical waveguide of radius
a = 250 nm. In all configurations, the beams are linearly polarized at the waveguide input to
ensure azimuthal confinement for trapped atoms. A pair of x-polarized red-detuned beams
generates a 1D lattice along the fiber axis for longitudinal confinement. Figure 1(b) shows
the configuration used in [6], namely a pair of red-detuned, x-polarized beams and a single
blue-detuned, y-polarized beam. An alternative scheme would be to use the three beams with
parallel polarizations, as illustrated in figure 1(c). This scheme allows for the use of lower
power for the blue-detuned beam, by approximately a factor of three for the parameters we will
consider in section 3, but results in larger vector shifts, as we will discuss in the next sections.
The scheme we propose makes use of four beams with parallel linear input polarizations, as
shown in figure 1(d). The additional blue-detuned beam compensates for the vector shifts of its
companion blue-detuned beam, as we will show.

Figure 2 illustrates a trap generated using the configuration of figure 1(b) and the
parameters of [6]. About 2000 atoms were trapped in a 1D lattice with a 50 ms lifetime. This
advance achieved by the group of A Rauschenbeutel represents an important milestone towards
the micro-manipulation of ultra-cold atoms using evanescent field traps.

2.3. HE11 mode—electric field polarization

The fundamental mode HE11 is often referred to as ‘quasi-linear’ when excited with a linearly
polarized input beam. However, for a dielectric waveguide in the strong-guiding regime with
indices of refraction n1 ≈ 1.5 inside the waveguide and n2 ≈ 1.0 outside, the HE11 mode
actually exhibits a significant ellipticity for a . λ/2, leading to vector shifts of the Zeeman
sublevels. Formally, for a linearly polarized input, the evanescent field E = (Ex , Ey, Ez) of the
fundamental mode propagating in the fiber can be expressed as follows for r > a [7, 44, 45]:

Ex(r, φ, z, t) = Alin
β11 J1(h11a)

2q11K1(q11a)
[(1 − s11)K0(q11r) cos(ϕ0)

+(1 + s11)K2(q11r) cos(2φ − ϕ0)]e
i(ωt−β11z), (4a)

Ey(r, φ, z, t) = Alin
β11 J1(h11a)

2q11K1(q11a)
[(1 − s11)K0(q11r) sin(ϕ0)

+(1 + s11)K2(q11r) sin(2φ − ϕ0)]e
i(ωt−β11z), (4b)

Ez(r, φ, z, t) = iAlin
J1(h11a)

K1(q11a)
K1(q11r) cos(φ − ϕ0)e

i(ωt−β11z), (4c)
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Figure 2. A ground-state trapping potential Utrap is generated by two
orthogonally polarized evanescent fields, confining Cs atoms outside a 500 nm
diameter optical fiber. Input polarizations are denoted by the arrows. (a) x–y
plane. (b) x–z plane. Utrap results from two counter-propagating red-detuned
beams (1064 nm, 2 × 2.2 mW), and a single blue-detuned beam (780 nm,
25 mW), as shown in figure 1(b) [6]. The standing wave structure of the attractive
red-detuned field and the repulsive force from the blue-detuned beam enable 3D
confinement of Cs atoms at each minimum of Utrap near the dielectric waveguide.
Utrap diverges as the surface is approached due to the attractive van der Waals
force.

with

s11 =

[
1

(h11a)2 +
1

(q11a)2

] [
J ′

1(h11a)

h11a J1(h11a)
+

K ′

1(q11a)

q11aK1(q11a)

]
, (5a)

h11 =

√
k2

0n2
1 − β2

11, (5b)

q11 =

√
β2

11 − k2
0n2

2. (5c)

Here, φ denotes the azimuthal position in the transverse plane (figure 1(a)), ϕ0 indicates
the polarization axis for the input polarization relative to the x axis, n1 and n2 are the indices of
refraction inside and outside the waveguide, β11 is the mode propagation constant, 1/h11 is the
characteristic decay length for the guided mode inside the fiber, 1/q11 is the characteristic decay
length for the guided mode outside the fiber, Alin is the real-valued amplitude for the linearly
polarized input, Jl is the lth Bessel function of the first kind and Kl is the lth modified Bessel
function of the second kind.
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Figure 3. Electric field E(x, y, z, t) of a single propagating beam in the plane
y = 0. The input beam is x-polarized. The electric field Re[E(x, y, z, t)], with
E(x, y, z, t) defined as in equation (4), is indicated by the blue arrows. The red
arrow indicates the beam propagation direction. The field is shown for (a) ωt = 0,
(b) ωt = π/2 and (c) ωt = π .

It is clear from equation (4) that the electric field intensity is not azimuthally symmetric.
For a beam polarized along ex , i.e. ϕ0 = 0, the intensity at the fiber’s outer surface is maximum
for φ = 0, π and minimum for φ = ±π/2.

Notably, the evanescent modes of the nanofiber have a significant longitudinal component
Ez along the fiber propagation direction, which is π/2 out-of-phase with the transverse
components (Ex , Ey) (equation (4c)). At the outer fiber surface, Ez is maximum for φ =

ϕ0, ϕ0 + π (i.e. along the input polarization axis) and vanishes for φ = ϕ0 ± π/2. For an
x-polarized input at 937 nm and a nanofiber of radius a = 250 nm, |Ez |

2

|E |2
(r = a+, φ = 0) ' 20%.

As a consequence, the polarization of a single propagating beam will be elliptical everywhere
except for φ = ϕ0 ± π/2. The ellipticity of the beam will be maximum for φ = ϕ0, ϕ0 + π as is
illustrated in figure 3, giving rise to significant vector shifts, which we describe in section 3.

We can re-write equations (4) as follows:

Ex(r, φ, z, t) = A ei(ωt−β11z), (6a)

Ey(r, φ, z, t) = B ei(ωt−β11z), (6b)

Ez(r, φ, z, t) = iC ei(ωt−β11z), (6c)

where A, B and C are real functions of r and φ. In particular, if one combines a forward-
propagating beam E(fwd) expressed as equation (6) with a backward-propagating beam of the
same amplitude and input polarization E(bwd)

= A ei(ωt+β11z)ex + B ei(ωt+β11z)ey − i C ei(ωt+β11z)ez,
the total field can be expressed as

E(tot)
= E(fwd) + E(bwd)

= 2
[
A cos(β11z)ex + B cos(β11z)ey + C sin(β11z)ez

]
· eiωt . (7)

The resulting electric field E(tot)
= E(fwd) + E(bwd) forms an optical lattice with spatially rotating

linear polarization as illustrated in figure 4. In particular, the polarization state of the field rotates
between the pure linear x- and z-polarizations along z at φ = 0, as illustrated in figure 5.
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Figure 4. Total electric field E(x, y, z, t) for two counter-propagating beams
in the plane y = 0. The input beams are x-polarized. The electric field
Re[E(x, y, z, t)] is indicated by the blue arrows. The red arrows indicate
the beam propagation directions. The electric field is shown for (a) ωt = 0,
(b) ωt = π/4 and (c) ωt = π . As opposed to figure 3, the polarization of the
electric field is linear at any point |r| > a (i.e. the polarization vector has no
ellipticity and E does not rotate in time at a given position r as in 3).

Figure 5. Electric field amplitude after interference E(tot)
= E(fwd) + E(bwd) of two

937 nm beams with δ f b = 0, at t = 0 and r = a+ as in figure 1(d) (i.e. x-polarized
inputs with ϕ0 = 0). The fields are normalized to the intensity I0 at r = a+, φ = 0,
z = 0. (a) The axial direction z (at φ = 0). (b) The azimuthal direction φ (at
z = 0). In particular, E(tot) has a fixed linear polarization at any given point r
which rotates as r is varied.

2.4. Cancellation of the vector shifts

In [6], the properties shown in figures 4 and 5 were used to cancel the vector shifts of ground
and excited m F states in Cs for the pair of red-detuned trapping beams for the configuration
in figure 1(b). However, vector shifts due to the single blue-detuned beam were zero only for
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φ = ϕ0, ϕ0 + π . Although the atoms are trapped at φ = ϕ0, ϕ0 + π , inevitable fluctuations of the
atom position will lead to non-zero vector light shifts of both ground and excited states.

The scheme in figure 1(c) allows for the use of reduced power for the blue-detuned beams
as compared to figure 1(b) but with the consequence of large vector shifts from the ellipticity of
the electric field even for φ = 0. We will therefore not consider this scheme in the next sections.

By contrast, the vector shifts of both the ground and excited states can be canceled for
both the red and blue-detuned fields by using pairs of counter-propagating beams, as shown
in figure 1(d). In the x–z plane, the vector shift for each pair becomes Ĥ 1 ∝ (α(1)(ω(fwd)) −

α(1)(ω(bwd)))
F̂y

F with ω(fwd)
' ω(bwd), where ω(fwd,bwd) are the angular frequencies for the forward

and backward propagating beams, and δ ± δ f b/2 are their detunings from the atomic transition
frequency ωa, with two-photon detuning δ f b = ω(fwd)

− ω(bwd). For an atom in the x–z plane, the
total electric field is also contained in the x–z plane, such that the scalar product (Ê(−)

× Ê(+)) · F̂
in equation (2) is proportional to F̂ y .

In the case of the red-detuned lattice, ω
(fwd)

red = ω
(bwd)

red and Ĥ (red)

1 = 0, precisely as in [6].
Adding a blue-detuned lattice with δ f b = 0 would result in two superimposed lattices with
unmatched spatial periods 2π/β red

11 , 2π/βblue
11 . To avoid this effect, the interference between

the counter-propagating blue-detuned fields E(fwd)

blue and E(bwd)

blue can be averaged over times short
compared to the time scale of the motional and internal dynamics of a trapped atom by offsetting
the frequencies of the two fields by δ f b � (ωtrap, δhfs), where ωtrap and δhfs are the trap angular
frequency and the hyperfine splitting for the ground state, respectively. This will also suppress
spurious two-photon processes (e.g. two-photon Stark shift [46]), as well as parametric heating
due to intensity modulation [47].

For ω
(fwd,bwd)

blue = ωa + (δ ± δ f b/2), we achieve a vector shift cancellation for the blue-
detuned field to the first order in 1/δ, namely

Ĥ (blue)
1 ∝

δ f b

δ2

F̂y

F
+O(1/δ3). (8)

For typical values of δ = 85 THz and δ f b = 30 GHz, δ f b/δ = 3.5 × 10−4.

2.5. Magic wavelengths for an evanescent field trap

To make the nanofiber trap state-insensitive, it is necessary to cancel the differential scalar shift
δUscalar of the 6S1/2 and 6P3/2 states by operating the trap at the magic wavelengths, as proposed
in [35], in which only the effects of the scalar and tensor shifts were considered. Here we
deal with the full complexity of the vector field E(r) and the resulting vector light shifts. We
numerically determine the red-detuned and blue-detuned magic wavelengths for the 6S1/2 →

6P3/2 transition, following the procedure described in [30, 34, 48, 49]. The calculation includes
the contributions of all the hyperfine levels F and Zeeman sublevels m F of the electronic
states {6S1/2, . . . , 15S1/2}, {6P1/2, . . . , 11P1/2}, {6P3/2, . . . , 11P3/2}, {6D3/2, . . . , 11D3/2} and
{6D5/2, . . . , 11D5/2}. The effect of the tensor shifts on the 6P3/2 excited state is manifest in the
quadratic splitting of the m F ′ sublevels (figure 6). We find a red-detuned magic wavelength
located around 935 nm, in accordance with the previously published values [34, 49]. In
the next sections, we will use the value λred = 937 nm, which cancels δUscalar for the 6P3/2

excited state |F ′
= 4, m F ′ = 0〉. We choose F ′

= 4 due to its relevance for coherent two-photon
processes [15–17]. There are several blue-detuned magic wavelengths [35, 49]. For our trap, we
use the magic wavelength λblue at approximately 687 nm [35]. Since this is the second closest

New Journal of Physics 14 (2012) 023056 (http://www.njp.org/)

http://www.njp.org/


11

Figure 6. Magic wavelengths of the Cs D2 line. We display the light shift Uls

for a linearly polarized beam with constant intensity 2.9 × 109 W m−2 around
(a) the blue-detuned magic wavelength at λblue ' 687 nm and (b) red-detuned
magic wavelength at λred ' 937 nm.

blue-detuned magic wavelength to 852 nm, it has the second highest ground-state polarizability
and therefore requires the second lowest optical intensity to generate the required trapping
potential (we do not consider the magic wavelength at 792 nm, as it is too close to the 8S1/2

to 6P3/2 transitions at 794 nm).
We have neglected higher-order processes in our analysis, including two-photon and

electric quadrupole transitions, near 687 nm [50].

3. Numerical results: trapping potentials

Using the atomic interaction Hamiltonian in the dipole approximation with the actual
polarization profile of the evanescent field, we proceed to analyze the adiabatic potentials for
the nanofiber trap for a Cs atom in its 6S1/2 ground and 6P3/2 excited states.

3.1. Total potential

For a specific atomic state of Cs, the total atomic trap potential Utrap consists of the total light-
shift potential Uls calculated from the full-Stark shift Hamiltonian (equation (2)), as well as the
surface interaction potential of an atom with the dielectric waveguide Usurface, namely

Utrap = Uls + Usurface. (9)

The Casimir–Polder interaction between the atom and dielectric surface has a significant
effect on the atomic motion at distance scales near 100 nm [20, 51–54]. The surface potential of
a ground-state Cs atom near a planar dielectric surface can be reasonably approximated by the
van der Waals potential which decays as d−3, where d = r − a:

Usurface = −
C3

d3
, (10)
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where we use C3(6S1/2)/h = 1.16 kHz µm3 [21]. Because the retarded Casimir–Polder forces
(d−4 scaling) decrease faster away from the surface than the van der Waals forces, using Usurface

overestimates the surface interaction at the trap location d ≈ 200 nm. Additionally, the curvature
of the nanofiber cylindrical geometry reduces the potential strength even further [21, 55]. The
d−3 scaling of the van der Waals expression for a planar surface is therefore an overestimate of
the actual surface potential. We use it for simplicity in the calculations presented here, with more
complete expressions for Cs presented in [21]. Furthermore, we neglect any dependence on the
m F ′ sublevels of the excited state 6P3/2, and simply approximate C3(6P3/2) ≈ 2 C3(6S1/2) [56].
We estimate that the corrections added by the retarded potential and the surface curvature should
be negligible at the trap location, as the surface potential falls off faster than the light potential,
as further discussed in the appendix.

We calculate the adiabatic potential of equation (9) by diagonalizing the total interaction
Hamiltonian Ĥ = Ĥ ls + Ĥ surface at each point in space, where Ĥ surface is the scalar surface
Hamiltonian. At each point r(r, φ, z), we obtain a set of eigenstates and the corresponding
eigenenergies. These eigenstates are superpositions of the |F, m F〉 bare Zeeman sublevels. Due
to the complex polarization of the trapping fields, the energy eigenstates are not necessarily
eigenstates of any projection of the angular momentum operator.

3.2. Effect of the light shifts in a ‘non-magic’ trap

First, we consider the trapping parameters for the experiment of Vetsch et al [6]. Despite
its impressive experimental success, the ground-state levels exhibit splittings that impair the
ground-state coherence. In the realization of [6], the two-color evanescent trap is constructed
using a pair of counter-propagating x-polarized (ϕ0 = 0) red-detuned beams Ered = E(fwd)

red +
E(bwd)

red (Pred = 2 × 2.2 mW) at λred = 1064 nm, forming an optical lattice, and a single repulsive
y-polarized (ϕ0 = π/2) blue-detuned beam Eblue (Pblue = 25 mW) at λblue = 780 nm. The SiO2

tapered optical fiber has a radius a = 250 nm in the trapping region.
Figure 7 shows the radial trapping potential Utrap(r, φ, z) of the ground states F = 3 and

F = 4 of 6S1/2 and excited states F ′
= 4 of 6P3/2, for z = 0 and φ = 0 (x-axis) (figure 7(a) and

for φ = π/2 (y-axis) figure 7(b)). The energy sublevels of the ground states at the trap location
(φ = 0) are degenerate, as both trapping fields are linearly polarized as illustrated in figure 4.
The excited state energy sublevels are shifted due to the vector and tensor shifts. The trap depth
for the ground state is Udepth = −0.4 mK, located at r − a ' 230 nm and φ = 0, whereas the
excited states are not trapped at all.

The azimuthal dependence of the trap potential reveals a significant inhomogeneous
broadening of the energy sublevels due to the ellipticity of Eblue for φ 6= 0, π (figure 8). To
estimate this broadening, we assume that the potential is harmonic around the trap minimum.
By fitting the ground state F = 3 potential with a harmonic potential around φ = π , we obtain
an azimuthal trapping frequency νtrapφ

' 150 kHz. For an atom in its azimuthal motional ground
state |n〉φ = |0〉φ in such a potential, the half-width σrφ

of the corresponding single-atom

distribution is given by σrφ
= 〈(rφ)2

〉 ' rtrapσφ =

√
h̄

4πmνtrapφ

' 16 nm (or azimuthal half-width of

σφ ' 2
◦

). This leads to fast decoherence of the hyperfine and Zeeman levels, even with ground-
state cooling. Specifically, we estimate a spin-wave coherence time τm = 1/δνφ . 5 µs, derived
from the δνφ = 200 kHz splitting between the sublevels of the F = 4 atomic ground state 16 nm
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Figure 7. Radial dependence of the trapping potential of the ground and excited
states for the parameters used in [6] at z = 0. The polarization configuration is
the same as figure 1(b). The energy sublevels of the ground states F = 3 and
F = 4 of 6S1/2 are shown as solid green and dashed black curves, and the F ′

= 4
sublevels of the electronically excited state (6P3/2) are shown as red dashed
curves. (a) Radial potential along φ = 0. The trap minimum is located at about
230 nm from the fiber surface. The excited state is untrapped, and split by the
tensor shifts. (b) Radial potential along φ = π/2. Both ground and excited states
are not trapped. The ground states exhibit a splitting due to the vector shifts
induced by the elliptical polarization of the blue-detuned light, and the excited
states are shifted by the vector and tensor shifts.

away from the trap minimum. This is significantly limited compared to the quantum memory
performances of atomic ensembles in optical lattices (see, e.g., [57]).

Finally, we plot in figure 9 a cross-section of the axial potentials showing the axial
confinement of the ground and excited states.

The excited states are untrapped in all directions except along the fiber axis z for the
parameters of [6]. An atom excited to these untrapped potentials will experience dipole-
force fluctuations, leading to heating [29] and preventing near-resonant driving of the optical
transition [58].

3.3. State-insensitive trapping potential

We now analyze our proposed ‘magic compensation’ scheme (as illustrated in figure 1(d)),
demonstrating how using magic wavelength beams and compensating for the trap ellipticity
can reduce the inhomogeneous broadening of the Zeeman sublevels in a nanofiber trap.
For this trap, we use a pair of counter-propagating x-polarized (ϕ0 = 0) red-detuned beams
Ered = E(fwd)

red + E(bwd)

red (Pred = 2 × 0.95 mW) at the ‘magic’ wavelength λred = 937 nm, forming a
1D optical lattice. Counter-propagating, x-polarized blue-detuned beams at the second ‘magic’
wavelength λblue = 687 nm are used with a power Pblue = 2 × 16 mW. The resulting interference
is averaged out by detuning the beams by δ f b = 30 GHz, as explained in section 2.4, leading to a
first-order cancellation of vector light shifts as expressed by equation (8). The beam intensities
are chosen to generate a trap of similar depth as the one demonstrated in [6]. The resulting
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Figure 8. Azimuthal dependence of the trapping potential of the ground and
excited states for the scheme in figure 1(b) and for the parameters used in
figure 7. r − a = 230 nm and z = 0. (a) The ground-state splitting is minimum
for φ = 0 and φ = π . Everywhere else, the polarization of the blue-detuned field
induces large vector shifts. (b) Expanded view of (a) near a trap minimum at
φ = π . The Zeeman-like splitting of the ground states is large even for small
azimuthal angles. The excited-state level structures are greatly altered by the
combined vector and tensor shifts.

Figure 9. Axial dependence of the trapping potential for the ground and excited
states for the scheme in figure 1(b) and for the parameters used in figure 7.
(a) Longitudinal potential along φ = 0. The distance from the fiber surface is
set to r − a = 230 nm at the trap minimum. (b) Longitudinal potential along
φ = π/2. The distance from the fiber surface is again set to 230 nm.

adiabatic potential Utrap allows for state-insensitive 3D confinement of cold Cs atoms around an
SiO2 nanofiber of radius a = 250 nm.

In figure 10, we show the radial trapping potential Utrap(r, φ, z) of the ground and excited
states for z = 0, φ = 0 (x-axis) (figure 10(a)) and for z = 0, φ = π/2 (y-axis) (figure 10(b)).
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Figure 10. Radial dependence of the trapping potentials of the ground and
excited states using the magic wavelengths and the configuration shown in
figure 1(d). All beams are polarized along φ = 0 (i.e. ϕ0 = 0). The 937 nm beams
each have a power of 0.95 mW. The 687 nm beams each have a power of 16 mW.
(a) Radial potentials along φ = 0 (i.e. ϕ0 = 0). The trap minimum for 6S1/2

is located at about 210 nm from the fiber surface. Both electronic ground and
excited states are trapped, with residual splittings of the excited states due to the
tensor shifts. (b) Radial potential along φ = π/2. (c, d) Expanded views of (a)
and (b) around the trap minimum.

Because the trapping fields are now effectively linearly polarized, the ground states are
degenerate at both φ = 0 and φ = π/2. In contrast to a non-magic wavelength trap, the excited
states are trapped with gradients that closely map that of the ground states. The sublevels of
6P3/2 are still non-degenerate due to the tensor shifts. For Pred, Pblue specified above, we find
that the trap depth is Udepth = −0.4 mK, located at r − a ' rtrap − a = 210 nm and φ = 0, π .

The azimuthal confinement of the atoms is shown by figure 11. The trap depth is reduced
compared to figure 8, due to the use of parallel polarizations for the trapping beams. This could
be overcome by using higher trapping power, to make the trap deeper in all directions. Using
perpendicular polarizations for the blue-detuned and red-detuned beams would unfortunately
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Figure 11. (a) Azimuthal dependence of the trapping potential of the ground and
excited states for the ‘magic compensated’ trap (figure 1(d)) with the parameters
used in figure 10, for r − a = 210 nm. (b) Expanded view of (a) around a trap
minimum. The effect of the compensation beam in figure 1(d) is to suppress the
vector shifts and to reduce the ground-state splittings δνφ in the transverse plane
for φ 6= 0, π .

require prohibitively high power at 685 nm. In contrast to the configurations shown in
figures 1(b) and (c), the inhomogeneous Zeeman broadening from the ellipticity of Eblue is
greatly reduced thanks to the compensation scheme of figure 1(d). It is non-zero, however, as
expressed by equation (8). The remaining splitting of the F = 4 ground state is δν ≈ 700 Hz,
limiting the coherence time to τ . 1/δν = 1.4 ms.

In the case of perfect cancellation of the vector shift with δ f b = 0, a residual non-zero
ground-state splitting δνφ would still arise from the different scalar dynamic polarizabilities of
the 6S1/2 F = 3 and F = 4 ground states [59]. For atoms in their azimuthal motional ground
state |n〉φ = |0〉φ , the single-atom distribution half-width is σrφ

' 30 nm (or σφ ' 4◦) with
azimuthal trap frequency νtrapφ

' 44 kHz obtained from a harmonic fit of the potential around
φ = π . We estimate a spin-wave coherence time τm = 1/1(δνφ)6 30 ms, coming from the
spread 1(δνφ) = δνφ(φ = π) − δνφ(φ = π + σφ) ≈ 30 Hz of the atomic ground states for the
F = 3 → F = 4 transition frequency.

We note that the longest achievable coherence time in the ‘magic compensated’ adiabatic
potential in the absence of ground-state splitting δνφ would be limited by spontaneous Raman
scattering driven by the trapping beams [34].

Finally, we also plot the axial potentials in figure 12, showing the confinement for both the
ground and excited states.

Thanks to the use of the magic wavelengths, the excited states are trapped in all directions.
This results in greatly suppressed dipole-force fluctuations, allowing for on-resonance driving
of the optical transition.

4. Conclusion

We have proposed and analyzed in detail a scheme for a state-insensitive optical nanofiber
trap that utilizes realistic experimental parameters. The ‘magic’ trapping wavelengths of 937
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Figure 12. Axial dependence of the trapping potentials of the ground and excited
states for the ‘magic compensated’ trap (figure 1(d)) with the parameters used
in figure 10. (a) Longitudinal potential along φ = 0 for r − a = 210 nm. (b)
Longitudinal potential along φ = π/2 for r − a = 210 nm.

and 687 nm for Cs atoms are readily available using semiconductor laser sources, and require
a reasonable power for trapping. Tapered optical fibers can be made with sub-wavelength
diameters and high transmission, as has been demonstrated experimentally [60, 61]. In [62]
we describe an experiment for trapping Cs using figure 1(d) configuration and explicitly
demonstrate features of the ‘compensated magic’ trap for a nanofiber.

Furthermore, extension to other nanoscopic dielectric waveguides [63] would make
evanescent optical trapping possible in integrated hybrid quantum devices [64]. It is worth
noting that the compensation scheme of the vector shift would work at any wavelength,
increasing the ground-state coherence time in a straightforward manner.

The proposed ‘magic compensated’ scheme allows for in-trap resonant processes,
increasing the trap lifetime under near-resonant driving of the transition, such as optical
pumping. The scattering rate in this trap is similar to the one obtained with the parameters
of [6], but the mismatch between the ground and excited states potentials could lead to the
large heating in [6]. However, it is not clear whether the ‘magic compensated’ trap will be more
robust to experimental fluctuations, and experimental studies will be required to investigate
the possible limitations of the trap lifetime. An important advantage of the proposed scheme
is the large reduction of the splitting of the ground-state manifolds compared to the scheme
used in [6], therefore leading to increased ground-state coherence time. These properties will
make quantum-state engineering more feasible in such a trap, allowing for a wide range of
experiments including creating quantum memories, coupling of single atoms and ensembles to
optical or mechanical resonators and studying 1D spin chains.

Acknowledgments

We gratefully acknowledge interactions with E S Polzik and M Pototschnig. Funding was
provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center
with support from the Gordon and Betty Moore Foundation, by NSF grant no. PHY0652914,
by the DoD NSSEFF program, by the AFOSR MURI for Quantum Memories and by Northrop
Grumman Aerospace Systems. AG was supported by the Nakajima Foundation.

New Journal of Physics 14 (2012) 023056 (http://www.njp.org/)

http://www.njp.org/


18

Figure A.1. Radial potential obtained using (a) the van der Waals surface
potential Usurface = −C3/d3 and (b) the heuristic surface potential of
equation (A.1). There is no noticeable difference at the potential minimum on
this scale.

Appendix. Effect of the surface potential at the trap location

The expression used in our calculation for the surface potential is an approximation, and we
attempt here to give an estimate of the error caused by this approximation at the trap location.
We will consider two main aspects: firstly, the importance of the knowledge of the C3 coefficient
in equation (10); secondly, the correction added by the 1/d4 dependence of the Casimir–Polder
potential.

We will therefore compare the radial potential presented in section 3.3 to a potential
computed using the following heuristic form for the surface potential:

U (CP)

surface = −C3
f

(d + f )d3
, (A.1)

where f = C4/C3. The values of C3 and C4 are computed for the limiting case of a
Cs atom near a plane dielectric surface, as described in [21]. The values we use are:
C3(6S1/2)/h = 1.16 kHz µm3, C4(6S1/2)/h = 0.15 kHz µm4, C3(6P3/2)/h = 2 C3(6S1/2)/h
and C4(6P3/2)/h = 0.62 kHz µm4. Please note that the C3 value for the excited state from [21]
is C3(6P3/2)/h = 1.71 kHz µm3.

Figure A.1 shows the potential presented in the main text and the potential obtained using
the above expression. The main noticeable difference is the height of the potential barrier around
45 nm away from the surface. The potential looks otherwise the same at the trap location on that
scale.

In figure A.2, we plot the difference δ = Utrap − U (CP)
trap , where Utrap is the potential obtained

using equations (9) and (10) and U (CP)
trap is the potential obtained using equation (A.1). For the

ground state, the residual difference is ≈1% of the trap depth around the trap minimum, 210 nm
away from the surface, as shown in figure A.2(a). For the excited state, this difference is ≈1.5%
at the potential minimum.
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Figure A.2. The difference δ = Utrap − U (CP)
trap between the two potentials shown

in figure A.1. (a) The ground state F = 3. The residual is ≈1% of the trap depth
at the trap location. (b) The excited state F ′

= 4. The residual is ≈1.5% of the
trap depth at the trap location.

We finally note that the curvature of the surface cannot be accounted for using the same
approach as in [21], as the distance from the surface approaches the surface radius of curvature
in the case of the nanofiber.
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