10 research outputs found

    Reducing infection risk and optimization of airing concepts for indoor air quality by accurate aerosol and CO2 measurement

    Get PDF
    Since the outbreak of the SARS-CoV-2 pandemic and the findings about the virus transmission route through aerosols, indoor air quality is a major topic when it comes to efforts to contain the spread of SARSCoV- 2 in the population. Most calculations of infection risk, however, still rely on CO2 as a proxy for exhaled aerosols. This assumption is no longer valid when air filtration devices are used, arising the need to include actual measured aerosol concentration into the calculation of indoor infection risk. To close this gab, a version of Wells-Riley equation, extended to include the effect of air filtration into determination of reproductive number, is introduced and applied to measurement data from indoor air quality during school lessons. The results show, that taking only CO2 into account will overestimate the real infection risk from aerosols by 20% in the cases without air filtration and by 60% in the cases with air filtration. Furthermore, measurement results varied strongly between different classrooms. This indicates that general airing recommendation, as applied during these tests, are not enough to assure a healthy environment and more individual measurements are necessary.publishedVersio

    Simultaneous Compression and Absorption for Energy‐Efficient Dissolution of Gases in Liquid

    Get PDF
    In this study, a novel approach for energy-efficient dissolution of gases in liquid is presented, which significantly reduces the compression work. The core of the one-step process is the simultaneous operation of compression and absorption. The liquid was injected into a cylinder filled with the gas, while a piston compressed the mixture during the injection time. The solubility increases with increasing system pressure, so that the compression work of the gas phase is permanently reduced on the one hand by the permanent reduction of the gas volume and on the other hand by the nearly isothermal compression process. The approach is demonstrated in this study using liquid H2_{2}O and gaseous CO2_{2} compressed up to 10 bar. The theoretical energy savings of the novel process compared to the conventional two-stage process is 41.2 % for the selected fluids. A maximum energy saving of 40.8 % was demonstrated in the experiments. The results also show that the energy saving depends on the curve of the piston speed and the injection time

    Comparing the Toxicological Responses of Pulmonary Air–Liquid Interface Models upon Exposure to Differentially Treated Carbon Fibers

    Get PDF
    In recent years, the use of carbon fibers (CFs) in various sectors of industry has been increasing. Despite the similarity of CF degradation products to other toxicologically relevant materials such as asbestos fibers and carbon nanotubes, a detailed toxicological evaluation of this class of material has yet to be performed. In this work, we exposed advanced air–liquid interface cell culture models of the human lung to CF. To simulate different stresses applied to CF throughout their life cycle, they were either mechanically (mCF) or thermo-mechanically pre-treated (tmCF). Different aspects of inhalation toxicity as well as their possible time-dependency were monitored. mCFs were found to induce a moderate inflammatory response, whereas tmCF elicited stronger inflammatory as well as apoptotic effects. Furthermore, thermal treatment changed the surface properties of the CF resulting in a presumed adhesion of the cells to the fiber fragments and subsequent cell loss. Triple-cultures encompassing epithelial, macrophage, and fibroblast cells stood out with an exceptionally high inflammatory response. Only a weak genotoxic effect was detected in the form of DNA strand breaks in mono- and co-cultures, with triple-cultures presenting a possible secondary genotoxicity. This work establishes CF fragments as a potentially harmful material and emphasizes the necessity of further toxicological assessment of existing and upcoming advanced CF-containing materials

    Exhaled Aerosols in SARS-CoV-2 Polymerase Chain Reaction-Positive Children and Age-Matched-Negative Controls

    Get PDF
    BackgroundChildren and adolescents seem to be less affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease in terms of severity, especially until the increasing spread of the omicron variant in December 2021. Anatomical structures and lower number of exhaled aerosols may in part explain this phenomenon. In a cohort of healthy and SARS-CoV-2 infected children, we compared exhaled particle counts to gain further insights about the spreading of SARS-CoV-2.Materials and MethodsIn this single-center prospective observational trial, a total of 162 children and adolescents (age 6–17 years), of whom 39 were polymerase chain reaction (PCR)-positive for SARS-CoV-2 and 123 PCR-negative, were included. The 39 PCR-positive children were compared to 39 PCR-negative age-matched controls. The data of all PCR-negative children were analyzed to determine baseline exhaled particle counts in children. In addition, medical and clinical history was obtained and spirometry was measured.ResultsBaseline exhaled particle counts were low in healthy children. Exhaled particle counts were significantly increased in SARS-CoV-2 PCR-positive children (median 355.0/L; range 81–6955/L), compared to age-matched -negative children (median 157.0/L; range 1–533/L; p < 0.001).ConclusionSARS-CoV-2 PCR-positive children exhaled significantly higher levels of aerosols than healthy children. Overall children had low levels of exhaled particle counts, possibly indicating that children are not the major driver of the SARS-CoV-2 pandemic.Trial Registration[ClinicalTrials.gov], Identifier [NCT04739020]

    Reducing infection risk and optimization of airing concepts for indoor air quality by accurate aerosol and CO2 measurement

    Get PDF
    Since the outbreak of the SARS-CoV-2 pandemic and the findings about the virus transmission route through aerosols, indoor air quality is a major topic when it comes to efforts to contain the spread of SARSCoV- 2 in the population. Most calculations of infection risk, however, still rely on CO2 as a proxy for exhaled aerosols. This assumption is no longer valid when air filtration devices are used, arising the need to include actual measured aerosol concentration into the calculation of indoor infection risk. To close this gab, a version of Wells-Riley equation, extended to include the effect of air filtration into determination of reproductive number, is introduced and applied to measurement data from indoor air quality during school lessons. The results show, that taking only CO2 into account will overestimate the real infection risk from aerosols by 20% in the cases without air filtration and by 60% in the cases with air filtration. Furthermore, measurement results varied strongly between different classrooms. This indicates that general airing recommendation, as applied during these tests, are not enough to assure a healthy environment and more individual measurements are necessary

    Comparing the Toxicological Responses of Pulmonary Air–Liquid Interface Models upon Exposure to Differentially Treated Carbon Fibers

    No full text
    In recent years, the use of carbon fibers (CFs) in various sectors of industry has been increasing. Despite the similarity of CF degradation products to other toxicologically relevant materials such as asbestos fibers and carbon nanotubes, a detailed toxicological evaluation of this class of material has yet to be performed. In this work, we exposed advanced air–liquid interface cell culture models of the human lung to CF. To simulate different stresses applied to CF throughout their life cycle, they were either mechanically (mCF) or thermo-mechanically pre-treated (tmCF). Different aspects of inhalation toxicity as well as their possible time-dependency were monitored. mCFs were found to induce a moderate inflammatory response, whereas tmCF elicited stronger inflammatory as well as apoptotic effects. Furthermore, thermal treatment changed the surface properties of the CF resulting in a presumed adhesion of the cells to the fiber fragments and subsequent cell loss. Triple-cultures encompassing epithelial, macrophage, and fibroblast cells stood out with an exceptionally high inflammatory response. Only a weak genotoxic effect was detected in the form of DNA strand breaks in mono- and co-cultures, with triple-cultures presenting a possible secondary genotoxicity. This work establishes CF fragments as a potentially harmful material and emphasizes the necessity of further toxicological assessment of existing and upcoming advanced CF-containing materials
    corecore