29 research outputs found
Non Parametric Distributed Inference in Sensor Networks Using Box Particles Messages
This paper deals with the problem of inference in distributed systems where the probability model is stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems, this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance, offers impressive reduction of the information circulating in the network and the needed computation times
Encéphalopathie de Gayet-Wernicke compliquant des vomissements sur terrain de néoplasie colique
L'encéphalopathie de Gayet-Wernicke est une complication neuropsychiatrique aiguë secondaire à une carence en thiamine. Les vomissements incoercibles compliquant une obstruction intestinale chronique en sont une cause rare. Nous rapportons un cas d'encéphalopathie de Gayet-Wernicke compliquant des vomissements incoercibles sur terrain de néoplasie colique, chez une patiente de 60 ans