16 research outputs found

    The Eucalyptus spectrograph

    Get PDF
    As part of the Brazilian contribution to the 4.2 m SOAR telescope project we are building the Integral Field Unit spectrograph, "SIFUS." With the aim of testing the performance of optical fibers with 50 microns core size on IFUs, we constructed a prototype of the IFU and a spectrograph that were installed at the 1.6 m telescope of the Observatorio do Pico dos Dias (OPD), managed by Laboratorio Nacional de Astrofisica (LNA) in Brazil. The IFU has 512 fibers coupled to a LIMO microlens array (16 x 32) covering a 15" x 30" field on the sky. The spectrograph is a medium resolution instrument, operating in a quasi-Littrow mode. It was based on the design of the SPIRAL spectrograph built by the Anglo-Australian Observatory. The name Eucalyptus was given following the name of the native Australian tree that adapted very well in Brazil and it was given in recognition to the collaboration with the colleagues of the Anglo-Australian Observatory. The instrument first light occurred in the first semester of 2001. The results confirmed the possibility of using the adopted fibers and construction techniques for the SIFUS. We present the features of the instrument, some examples of the scientific data obtained, and the status of the commissioning, calibration and automation plans. The efficiency of this IFU was determined to be 53% during telescope commissioning tests

    The Eucalyptus spectrograph

    Get PDF
    As part of the Brazilian contribution to the 4.2 m SOAR telescope project we are building the Integral Field Unit spectrograph, "SIFUS." With the aim of testing the performance of optical fibers with 50 microns core size on IFUs, we constructed a prototype of the IFU and a spectrograph that were installed at the 1.6 m telescope of the Observatorio do Pico dos Dias (OPD), managed by Laboratorio Nacional de Astrofisica (LNA) in Brazil. The IFU has 512 fibers coupled to a LIMO microlens array (16 x 32) covering a 15" x 30" field on the sky. The spectrograph is a medium resolution instrument, operating in a quasi-Littrow mode. It was based on the design of the SPIRAL spectrograph built by the Anglo-Australian Observatory. The name Eucalyptus was given following the name of the native Australian tree that adapted very well in Brazil and it was given in recognition to the collaboration with the colleagues of the Anglo-Australian Observatory. The instrument first light occurred in the first semester of 2001. The results confirmed the possibility of using the adopted fibers and construction techniques for the SIFUS. We present the features of the instrument, some examples of the scientific data obtained, and the status of the commissioning, calibration and automation plans. The efficiency of this IFU was determined to be 53% during telescope commissioning tests

    CUBES: a UV spectrograph for the future

    Get PDF
    In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000, although a lower-resolution, sky-limited mode of R ~ 7,000 is also planned. CUBES will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the Phase B dedicated to detailed design and construction. First science operations are planned for 2028. In this paper, we briefly describe the CUBES project development and goals, the main science cases, the instrument design and the project organization and management
    corecore